期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于改进Faster R-CNN识别深度视频图像哺乳母猪姿态 被引量:50
1
作者 薛月菊 朱勋沐 +7 位作者 郑婵 毛亮 杨阿庆 涂淑琴 黄宁 杨晓帆 陈鹏飞 张南峰 《农业工程学报》 EI CAS CSCD 北大核心 2018年第9期189-196,共8页
猪舍场景下,昼夜交替光线变化、热灯光照影响,及仔猪与母猪的粘连等因素,给全天候哺乳母猪姿态自动识别带来很大困难。该文以深度视频图像为数据源,提出基于改进Faster R-CNN的哺乳母猪姿态识别算法。将残差结构引入ZF网络,设计ZF-D2R网... 猪舍场景下,昼夜交替光线变化、热灯光照影响,及仔猪与母猪的粘连等因素,给全天候哺乳母猪姿态自动识别带来很大困难。该文以深度视频图像为数据源,提出基于改进Faster R-CNN的哺乳母猪姿态识别算法。将残差结构引入ZF网络,设计ZF-D2R网络,以提高识别精度并保持实时性;将Center Loss监督信号引入Faster R-CNN训练中,以增强类内特征的内聚性,提升识别精度。对28栏猪的视频图像抽取站立、坐立、俯卧、腹卧和侧卧5类姿态共计7 541张图像作为训练集,另取5类姿态的5 000张图像作为测试集。该文提出的改进模型在测试集上对哺乳母猪的站立、坐立、俯卧、腹卧和侧卧5类姿态的识别平均准确率分别达到96.73%、94.62%、86.28%、89.57%和99.04%,5类姿态的平均准确率均值达到93.25%。在识别精度上,比ZF网络和层数更深的VGG16网络的平均准确率均值分别提高了3.86和1.24个百分点。识别速度为0.058 s/帧,比VGG16网络速度提高了0.034 s。该文方法在提高识别精度的同时保证了实时性,可为全天候母猪行为识别提供技术参考。 展开更多
关键词 图像识别 算法 模型 FASTER R-CNN 残差结构 CENTER LOSS 哺乳母猪 姿态识别
下载PDF
未成熟芒果的改进YOLOv2识别方法 被引量:87
2
作者 薛月菊 黄宁 +5 位作者 涂淑琴 毛亮 杨阿庆 朱勋沐 杨晓帆 陈鹏飞 《农业工程学报》 EI CAS CSCD 北大核心 2018年第7期173-179,共7页
在果园场景下,由于光照的多样性、背景的复杂性及芒果与树叶颜色的高度相似性,特别是树叶和枝干对果实遮挡及果实重叠,给未成熟芒果检测带来极大的挑战。本文提出果园场景下未成熟芒果的改进YOLOv2检测方法。设计新的带密集连接的Tiny-y... 在果园场景下,由于光照的多样性、背景的复杂性及芒果与树叶颜色的高度相似性,特别是树叶和枝干对果实遮挡及果实重叠,给未成熟芒果检测带来极大的挑战。本文提出果园场景下未成熟芒果的改进YOLOv2检测方法。设计新的带密集连接的Tiny-yolo网络结构,实现网络多层特征的复用和融合,提高检测精度。为克服遮挡重叠果实检测困难,手工标注遮挡或重叠芒果的前景区域,然后用样本的前景区域训练YOLOv2网络,减小边界框内非前景区域特征的干扰,增强对目标前景区域卷积特征的学习。并以扩增的数据集,采用增大输入尺度和多尺度策略训练网络。最后,对本文方法进行性能评价与对比试验。试验结果表明,该方法在测试集上,芒果目标检测速度达83帧/s,准确率达97.02%,召回率达95.1%。对比Faster RCNN,该方法在杂物遮挡和果实重叠等复杂场景下,检测性能显著提升。 展开更多
关键词 神经网络 特征提取 估产 芒果 密集连接 YOLOv2网络
下载PDF
基于全卷积网络的哺乳母猪图像分割 被引量:28
3
作者 杨阿庆 薛月菊 +6 位作者 黄华盛 黄宁 童欣欣 朱勋沐 杨晓帆 毛亮 郑婵 《农业工程学报》 EI CAS CSCD 北大核心 2017年第23期219-225,共7页
猪舍场景下,光照变化、母猪体表颜色不均及与环境颜色对比度不大、母猪与仔猪的粘连等,均给目标分割带来很大的困难。该文提出了基于全卷积网络(FCN,fully convolutional networks)的哺乳母猪图像分割算法。以VGG16为基础网络,采用融合... 猪舍场景下,光照变化、母猪体表颜色不均及与环境颜色对比度不大、母猪与仔猪的粘连等,均给目标分割带来很大的困难。该文提出了基于全卷积网络(FCN,fully convolutional networks)的哺乳母猪图像分割算法。以VGG16为基础网络,采用融合深层抽象特征与浅层细节特征并将融合的特征图上采样8倍的跳跃式结构,设计哺乳母猪分割的FCN。利用Caffe深度学习框架,以7栏伴有不同日龄仔猪的3811幅哺乳母猪训练样本进行母猪分割FCN训练,在另外21栏的523幅哺乳母猪测试集上的分割结果表明:该算法可有效避免光线变化、母猪颜色不均、小猪遮挡与粘连等影响,实现完整的哺乳母猪区域分割;分割的平均准确率达到99.28%,平均区域重合度达到95.16%,平均速度达到0.22 s/幅。与深度卷积网络的SDS(simultaneous detection and segmentation)及传统的基于图论的图像分割、基于水平集的图像分割方法做了对比试验,该文分割方法平均区域重合度分别比这3种方法高出9.99、31.96和26.44个百分点,有较好的泛化性和鲁棒性,实现了猪舍场景下哺乳母猪准确、快速分割,可为猪只图像分割提供了技术参考。 展开更多
关键词 图像分割 算法 试验 全卷积网络 哺乳母猪
下载PDF
自然场景下的挖掘机实时监测方法 被引量:3
4
作者 毛亮 薛月菊 +3 位作者 朱婷婷 魏颖慧 何俊乐 朱勋沐 《农业工程学报》 EI CAS CSCD 北大核心 2020年第9期214-220,共7页
为实时监测违法用地现象,对作业挖掘机等施工机械进行实时监测至关重要。针对自然场景下由于背景复杂、光照不均匀及遮挡等导致作业挖掘机难以准确检测出的问题,该文采用类似SSD(Single Shot Detector)方法的网络结构,提出一种自然场景... 为实时监测违法用地现象,对作业挖掘机等施工机械进行实时监测至关重要。针对自然场景下由于背景复杂、光照不均匀及遮挡等导致作业挖掘机难以准确检测出的问题,该文采用类似SSD(Single Shot Detector)方法的网络结构,提出一种自然场景下的挖掘机实时监测方法。该方法采用堆叠DDB(Depthwise Dense Block)模块组成基础网络,实现浅层特征提取,并与高层特征融合,提高网络模型的特征表达能力;在MobileNetV2网络的基础上进行改进,设计BDM(Bottleneck Down-Sampling Module)模块构成多尺度特征提取网络,使模型参数数量和计算量减少为SSD的68.4%。构建不同视角和场景下的挖掘机目标数据集,共计18537张,其中15009张作为训练集,3528张作为测试集,并在主流Jetson TX1嵌入式硬件平台进行网络模型移植和验证。试验表明,该文方法的m AP(Mean Average Precision)为90.6%,其检测精度优于SSD和Mobile Net V2SSD的90.2%;模型大小为4.2 MB,分别减小为SSD和Mobile Net V2SSD的1/25和1/4,每帧检测耗时145.2 ms,相比SSD和MobileNetV2SSD分别提高了122.7%和28.2%,可以较好地部署在嵌入式硬件平台上,为现场及时发现违法用地作业提供有效手段。 展开更多
关键词 农业机械 监测 模型 SSD MobileNetV2 自然场景 挖掘机 嵌入式硬件
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部