We synthesize the perovskite compound Sm Cr0.9Fe0.1O3 by the sol–gel method and investigate its exchange bias properties through thermomagnetic and isothermal magnetization measurements. The sign reversals of the exc...We synthesize the perovskite compound Sm Cr0.9Fe0.1O3 by the sol–gel method and investigate its exchange bias properties through thermomagnetic and isothermal magnetization measurements. The sign reversals of the exchange bias field are observed at the magnetization compensation temperatures 29.6 K and 96.2 K. It is demonstrated that the occurrence of the exchange bias originates from the antiferromagnetic coupling between the Cr-rich and Fe–Cr regions, of which the net magnetization is temperature-dependent. These results imply that there are potential applications in single systems with sign reversals of both magnetization and exchange bias.展开更多
基金Project supported by the National Basic Research Program of China(Grant Nos.2014AA032904 and 2009CB929501)the National Natural Science Foundation of China(Grant Nos.11174130 and U1232210)
文摘We synthesize the perovskite compound Sm Cr0.9Fe0.1O3 by the sol–gel method and investigate its exchange bias properties through thermomagnetic and isothermal magnetization measurements. The sign reversals of the exchange bias field are observed at the magnetization compensation temperatures 29.6 K and 96.2 K. It is demonstrated that the occurrence of the exchange bias originates from the antiferromagnetic coupling between the Cr-rich and Fe–Cr regions, of which the net magnetization is temperature-dependent. These results imply that there are potential applications in single systems with sign reversals of both magnetization and exchange bias.