In this note we give two sets of symmetries for the nonlinear evolution equations related to the Kaup-Newell eigenvalue problem and propose an infinite dimensional Lie algebra for them.
In this paper we prove some properties of the strong symmetry and hereditary symmetry which are very useful in discussion on the symmetry of the nonlinear evolution equation.
自从Olver发现KdV方程存在以方程的解u及自变数x,t组合而成的两个对称后,人们对于寻找这个方程的新对称便产生了浓厚的兴趣.1982年,Fuchssteiner,B.和Fokas,A.S.,Chen,H.H.,Lee,Y.C.和 Lin J.E.,利用不同的方法相继得到了它更多的新对...自从Olver发现KdV方程存在以方程的解u及自变数x,t组合而成的两个对称后,人们对于寻找这个方程的新对称便产生了浓厚的兴趣.1982年,Fuchssteiner,B.和Fokas,A.S.,Chen,H.H.,Lee,Y.C.和 Lin J.E.,利用不同的方法相继得到了它更多的新对称及新旧对称的Lie代数结构.展开更多
基金Project supported by the Science Fund of Academia Sinica
文摘In this note we give two sets of symmetries for the nonlinear evolution equations related to the Kaup-Newell eigenvalue problem and propose an infinite dimensional Lie algebra for them.
文摘In this paper we prove some properties of the strong symmetry and hereditary symmetry which are very useful in discussion on the symmetry of the nonlinear evolution equation.
文摘自从Olver发现KdV方程存在以方程的解u及自变数x,t组合而成的两个对称后,人们对于寻找这个方程的新对称便产生了浓厚的兴趣.1982年,Fuchssteiner,B.和Fokas,A.S.,Chen,H.H.,Lee,Y.C.和 Lin J.E.,利用不同的方法相继得到了它更多的新对称及新旧对称的Lie代数结构.