【目的】细根生长与森林生产力的关系十分密切,而酚酸在根际的累积可能影响杨树根系形态建成及生物量分配进而影响生产力。笔者通过模拟杨树人工林根际酚酸环境,探究杨树幼苗根系形态建成对酚酸的响应,深入揭示根-土界面性质改变对林木...【目的】细根生长与森林生产力的关系十分密切,而酚酸在根际的累积可能影响杨树根系形态建成及生物量分配进而影响生产力。笔者通过模拟杨树人工林根际酚酸环境,探究杨树幼苗根系形态建成对酚酸的响应,深入揭示根-土界面性质改变对林木根系生长的影响,为探明人工林根际过程和林分生产力之间的关系提供参考。【方法】以改良Hoagland营养液为基础,参照连作二代杨树人工林土壤酚酸含量配制溶液并进行杨树幼苗培养。采集杨树幼苗根系,按50%的比例选取细根(根径D<2mm)样本并按根序进行分级,制作1~5级根序细根石蜡横剖面切片。采用根系扫描仪结合分析软件获得各根序细根的长度、直径,利用光学显微镜观察各根序细根的剖面直径、维管束(中柱)直径等参数,并计算比根长、根组织密度、维根比等。采用Origin Pro 8.0进行数据的差异显著性检验并作图,分析细根形态特征和剖面结构参数的相关性。【结果】酚酸处理显著减少了杨树幼苗根系生物量。1~5级根序细根的生物量在对照和酚酸处理间无显著差异,但其所占生物量比例显著增加。酚酸处理总体抑制了杨树幼苗细根的伸长生长,1~3级根序细根的长度显著低于对照。酚酸处理具有增大杨树根系直径的效应,但1~5级根序细根的表面积在酚酸处理下均较对照显著下降。酚酸处理显著影响了杨树幼苗各根序细根的比根长和根组织密度,使比根长显著下降而根组织密度显著增大。此外,酚酸显著影响了杨树幼苗根系的生长发育,酚酸处理下1~5级根序细根的维根比显著增大,根系内输导组织分化显著。【结论】酚酸对杨树细根生长发育具有一定抑制作用,酚酸处理下不同根序细根形态的变化体现了根系功能的改变,这将影响根系吸收进而对杨树地上部分的生长产生抑制。不同根序细根形态建成的差异性也在一定程度上反映出酚酸影响下杨树根系的生长策略。展开更多
A combination of rapid industrialization, economic development and urbanization has caused a series of issues such as resource shortages, ecosystem destruction, environmental pollution and tension between human needs ...A combination of rapid industrialization, economic development and urbanization has caused a series of issues such as resource shortages, ecosystem destruction, environmental pollution and tension between human needs and land conservation. In order to promote balanced development of human, resources, ecosystems, the environment, and the economy and society, it is vital to conceptualize ecological spaces, production spaces and living spaces. Previous studies of ecological-production-living spaces focused mainly on urban and rural areas; few studies have examined mountainous areas. The Taihang Mountains, a key area between the North China Plain and Beijing-Tianjin-Hebei area providing ecological shelter and the safeguarding of crucial water sources, suffer from increasing problems of fragile environment, inappropriate land use and tensions in the human-land relationship. However, studies of the ecological, production, and living spaces in the Taihang Mountains are still lacking. Therefore, this study, based on the concept of ecological-production-living spaces and using data from multiple sources, took the Taihang Mountains as the study area to build a functional land classification system for ecological-production-living spaces. After the classification system was in place, spatial distribution maps for ecological, production and living spaces were delineated. This space mapping not only characterized the present land use situation, but also established a foundation for future land use optimization. Results showed that the area of ecological space was 78,440 km^2, production space 51,861 km^2 and living space 6,646 km^2, accounting for 57.28%, 37.87% and 4.85% of the total area, respectively. Ecological space takes up the most area and is composed mainly of forests and grasslands. Additionally, most of the ecological space is located in higher elevation mountainous areas, and plays an important role in regulating and maintaining ecological security. Production space, mostly farmlands sustaining livelihoods inside and outside the region, is largely situated in lower elevation plains and hilly areas, as well as in low-lying mountainous basins. Living space has the smallest area and is concentrated mainly in regions with relatively flat terrain and convenient transportation for human settlements.展开更多
文摘【目的】细根生长与森林生产力的关系十分密切,而酚酸在根际的累积可能影响杨树根系形态建成及生物量分配进而影响生产力。笔者通过模拟杨树人工林根际酚酸环境,探究杨树幼苗根系形态建成对酚酸的响应,深入揭示根-土界面性质改变对林木根系生长的影响,为探明人工林根际过程和林分生产力之间的关系提供参考。【方法】以改良Hoagland营养液为基础,参照连作二代杨树人工林土壤酚酸含量配制溶液并进行杨树幼苗培养。采集杨树幼苗根系,按50%的比例选取细根(根径D<2mm)样本并按根序进行分级,制作1~5级根序细根石蜡横剖面切片。采用根系扫描仪结合分析软件获得各根序细根的长度、直径,利用光学显微镜观察各根序细根的剖面直径、维管束(中柱)直径等参数,并计算比根长、根组织密度、维根比等。采用Origin Pro 8.0进行数据的差异显著性检验并作图,分析细根形态特征和剖面结构参数的相关性。【结果】酚酸处理显著减少了杨树幼苗根系生物量。1~5级根序细根的生物量在对照和酚酸处理间无显著差异,但其所占生物量比例显著增加。酚酸处理总体抑制了杨树幼苗细根的伸长生长,1~3级根序细根的长度显著低于对照。酚酸处理具有增大杨树根系直径的效应,但1~5级根序细根的表面积在酚酸处理下均较对照显著下降。酚酸处理显著影响了杨树幼苗各根序细根的比根长和根组织密度,使比根长显著下降而根组织密度显著增大。此外,酚酸显著影响了杨树幼苗根系的生长发育,酚酸处理下1~5级根序细根的维根比显著增大,根系内输导组织分化显著。【结论】酚酸对杨树细根生长发育具有一定抑制作用,酚酸处理下不同根序细根形态的变化体现了根系功能的改变,这将影响根系吸收进而对杨树地上部分的生长产生抑制。不同根序细根形态建成的差异性也在一定程度上反映出酚酸影响下杨树根系的生长策略。
基金National Basic Research Program of China(2015CB452705)
文摘A combination of rapid industrialization, economic development and urbanization has caused a series of issues such as resource shortages, ecosystem destruction, environmental pollution and tension between human needs and land conservation. In order to promote balanced development of human, resources, ecosystems, the environment, and the economy and society, it is vital to conceptualize ecological spaces, production spaces and living spaces. Previous studies of ecological-production-living spaces focused mainly on urban and rural areas; few studies have examined mountainous areas. The Taihang Mountains, a key area between the North China Plain and Beijing-Tianjin-Hebei area providing ecological shelter and the safeguarding of crucial water sources, suffer from increasing problems of fragile environment, inappropriate land use and tensions in the human-land relationship. However, studies of the ecological, production, and living spaces in the Taihang Mountains are still lacking. Therefore, this study, based on the concept of ecological-production-living spaces and using data from multiple sources, took the Taihang Mountains as the study area to build a functional land classification system for ecological-production-living spaces. After the classification system was in place, spatial distribution maps for ecological, production and living spaces were delineated. This space mapping not only characterized the present land use situation, but also established a foundation for future land use optimization. Results showed that the area of ecological space was 78,440 km^2, production space 51,861 km^2 and living space 6,646 km^2, accounting for 57.28%, 37.87% and 4.85% of the total area, respectively. Ecological space takes up the most area and is composed mainly of forests and grasslands. Additionally, most of the ecological space is located in higher elevation mountainous areas, and plays an important role in regulating and maintaining ecological security. Production space, mostly farmlands sustaining livelihoods inside and outside the region, is largely situated in lower elevation plains and hilly areas, as well as in low-lying mountainous basins. Living space has the smallest area and is concentrated mainly in regions with relatively flat terrain and convenient transportation for human settlements.