期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
图像匹配方法研究综述 被引量:99
1
作者 贾迪 朱宁丹 +3 位作者 杨宁华 吴思 李玉秀 赵明远 《中国图象图形学报》 CSCD 北大核心 2019年第5期677-699,共23页
目的图像匹配作为计算机视觉的核心任务,是后续高级图像处理的关键,如目标识别、图像拼接、3维重建、视觉定位、场景深度计算等。本文从局部不变特征点、直线、区域匹配3个方面对图像匹配方法予以综述。方法局部不变特征点匹配在图像匹... 目的图像匹配作为计算机视觉的核心任务,是后续高级图像处理的关键,如目标识别、图像拼接、3维重建、视觉定位、场景深度计算等。本文从局部不变特征点、直线、区域匹配3个方面对图像匹配方法予以综述。方法局部不变特征点匹配在图像匹配领域发展中最早出现,对这类方法中经典的算法本文仅予以简述,对于近年来新出现的方法予以重点介绍,尤其是基于深度学习的匹配方法,包括时间不变特征检测器(TILDE)、Quad-networks、深度卷积特征点描述符(Deep Desc)、基于学习的不变特征变换(LIFT)等。由于外点剔除类方法常用于提高局部不变点特征匹配的准确率,因此也对这类方法予以介绍,包括用于全局运动建模的双边函数(BF)、基于网格的运动统计(GMS)、向量场一致性估计(VFC)等。与局部不变特征点相比,线包含更多场景和对象的结构信息,更适用于具有重复纹理信息的像对匹配中,线匹配的研究需要克服包括端点位置不准确、线段外观不明显、线段碎片等问题,解决这类问题的方法有线带描述符(LBD)、基于上下文和表面的线匹配(CA)、基于点对应的线匹配(LP)、共面线点投影不变量法等,本文从问题解决过程的角度对这类方法予以介绍。区域匹配从区域特征提取与匹配、模板匹配两个角度对这类算法予以介绍,典型的区域特征提取与匹配方法包括最大稳定极值区域(MSER)、基于树的莫尔斯区域(TBMR),模板匹配包括快速仿射模板匹配(FAs T-Match)、彩色图像的快速仿射模板匹配(CFASTMatch)、具有变形和多样性的相似性度量(DDIS)、遮挡感知模板匹配(OATM),以及深度学习类的方法 MatchNet、L2-Net、PN-Net、Deep CD等。结果本文从局部不变特征点、直线、区域3个方面对图像匹配方法进行总结对比,包括特征匹配方法中影响因素的比较、基于深度学习类匹配方法的比较等,给出这类方法对应的论文及代码下载地址,并对未来的研究方向予以展望。结论图像匹配是计算机视觉领域后续高级处理的基础,目前在宽基线匹配、实时匹配方面仍需进一步深入研究。 展开更多
关键词 图像匹配 局部不变特征匹配 直线匹配 区域匹配 语义匹配 深度学习
原文传递
面向像对直线特征匹配的线特征矫正与提纯方法 被引量:5
2
作者 贾迪 李玉秀 +1 位作者 赵明远 朱宁丹 《中国图象图形学报》 CSCD 北大核心 2019年第7期1176-1187,共12页
目的像对直线特征匹配是计算机视觉的重要研究内容,现有这类匹配方法均存在不同程度的误匹配问题。导致此问题的主要因素包括直线检测结果没有位于图像的真正边缘处、缺乏匹配线对的一致性校验。为此本文提出一种面向像对直线特征匹配... 目的像对直线特征匹配是计算机视觉的重要研究内容,现有这类匹配方法均存在不同程度的误匹配问题。导致此问题的主要因素包括直线检测结果没有位于图像的真正边缘处、缺乏匹配线对的一致性校验。为此本文提出一种面向像对直线特征匹配的线特征矫正与提纯方法。方法首先提取像对的边缘特征获得二值化边缘图,通过边缘梯度图及梯度矢量图(GVF)建立梯度引力图。其次,采用直线检测方法提取像对的直线特征,并通过梯度引力图矫正直线位置。最后,采用点特征匹配结果计算像对极线,并结合直线匹配结果确定最后的局部校验特征区域,通过随机抽样一致小邻域范围内特征相似性校验直线匹配结果,从而剔除误匹配直线。结果对一组宽基线像对进行匹配实验,与直接采用直线匹配算法获得的匹配结果相比,矫正后的匹配结果剔除了大部分误匹配线对,将匹配准确率从50%提高到84%,继续提纯该匹配结果获得了100%的匹配准确率。在另一组宽基线像对的匹配实验中,经本文方法处理后的匹配准确率提高近30%。与前两组实验相比,第3组实验的像对摄影姿态变化不大,仅在尺度上有所区别,经本文方法处理后配准率从92%提高到100%。结论采用本文方法可以大幅提高像对直线特征匹配的准确率,同时该方法可以很容易对其他直线匹配结果进行校正与提纯,具备较高的实用性。 展开更多
关键词 直线特征 梯度矢量图 梯度引力图 对极线 随机抽样一致
原文传递
面向重复纹理及非刚性形变的像对高效稠密匹配方法 被引量:2
3
作者 贾迪 赵明远 +2 位作者 杨宁华 朱宁丹 孟琭 《中国图象图形学报》 CSCD 北大核心 2019年第6期924-933,共10页
目的像对稠密匹配是3维重建和SLAM(simultaneous localization and mapping)等高级图像处理的基础,而摄影基线过宽、重复纹理、非刚性形变和时空效率低下等问题是影响这类方法实用性的主要因素,为了更好地解决这类问题,本文提出一种面... 目的像对稠密匹配是3维重建和SLAM(simultaneous localization and mapping)等高级图像处理的基础,而摄影基线过宽、重复纹理、非刚性形变和时空效率低下等问题是影响这类方法实用性的主要因素,为了更好地解决这类问题,本文提出一种面向重复纹理及非刚性形变的高效稠密匹配方法。方法首先,采用Deep Matching算法获得降采样后像对的匹配点集,并采用随机抽样一致算法剔除其中外点。其次,利用上一步得到的匹配结果估计相机位姿及缩放比例,以确定每个点对稠密化过程中的邻域,再对相应点对的邻域提取HOG描述符并进行卷积操作得到分数矩阵。最后,根据归一化后分数矩阵的数值以及下标距离的方差确定新的匹配点对以实现稠密化。结果在多个公共数据集上采用相同大小且宽高比为4∶3的像对进行实验,实验结果表明,本文方法具备一定的抗旋转、尺度变化与形变的能力,能够较好地完成宽基线条件下具有重复纹理及非刚性形变像对的匹配。与DeepMatching算法进行对比实验,本文方法在查准率、空间效率和时间效率上分别提高了近10%、25%和30%。结论本文提出的稠密匹配方法具有较高的查准率和时空效率,其结果可以运用于3维重建和超分辨率重建等高级图像处理技术中。 展开更多
关键词 稠密匹配 非刚体 重复纹理 宽基线 方向梯度直方图
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部