期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
玻璃表面反射线偏振光的光强规律实验研究 被引量:3
1
作者 朱昌良 许嘉琪 +5 位作者 赵容 曲胜艳 孙凤荣 周子琳 戴瑞 贾艳 《物理实验》 2015年第12期39-42,共4页
当线偏振光从空气入射到玻璃表面时,其反射光仍为线偏振光,反射率与入射角i、入射线偏振光振动面的方位角α有关.本文分别从理论上和实验上研究了反射光强随入射角度i的变化规律,及入射光偏振态对反射光强的影响,实验结果与理论模拟吻... 当线偏振光从空气入射到玻璃表面时,其反射光仍为线偏振光,反射率与入射角i、入射线偏振光振动面的方位角α有关.本文分别从理论上和实验上研究了反射光强随入射角度i的变化规律,及入射光偏振态对反射光强的影响,实验结果与理论模拟吻合很好.此外,利用入射光只有p分量时的光强反射率与入射角i的关系曲线测定了样品玻璃的布儒斯特角及折射率. 展开更多
关键词 线偏振光 布儒斯特角 折射率
下载PDF
Prediction of Thermal Conductance of Complex Networks with Deep Learning
2
作者 朱昌良 沈翔瀛 +1 位作者 朱桂妹 李保文 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第12期68-72,共5页
Predicting thermal conductance of complex networks poses a formidable challenge in the field of materials science and engineering. This challenge arises due to the intricate interplay between the parameters of network... Predicting thermal conductance of complex networks poses a formidable challenge in the field of materials science and engineering. This challenge arises due to the intricate interplay between the parameters of network structure and thermal conductance, encompassing connectivity, network topology, network geometry, node inhomogeneity, and others. Our understanding of how these parameters specifically influence heat transfer performance remains limited. Deep learning offers a promising approach for addressing such complex problems. We find that the well-established convolutional neural network models AlexNet can predict the thermal conductance of complex network efficiently. Our approach further optimizes the calculation efficiency by reducing the image recognition in consideration that the thermal transfer is inherently encoded within the Laplacian matrix.Intriguingly, our findings reveal that adopting a simpler convolutional neural network architecture can achieve a comparable prediction accuracy while requiring less computational time. This result facilitates a more efficient solution for predicting the thermal conductance of complex networks and serves as a reference for machine learning algorithm in related domains. 展开更多
关键词 NETWORK DEEP NETWORKS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部