The generalized oscillator strengths of the dipole-forbidden excitations of the ^(1)A_(2) of H_(2)O and D_(2)O were calculated with the time dependent density functional theory,by taking into account the vibronic effe...The generalized oscillator strengths of the dipole-forbidden excitations of the ^(1)A_(2) of H_(2)O and D_(2)O were calculated with the time dependent density functional theory,by taking into account the vibronic effect.It is found that the vibronic effect converts the dipole-forbidden excitation of the ^(1)A_(2) into a dipole-allowed one,which enhances the intensities of the corresponding generalized oscillator strength in the small squared momentum transfer region.The present investigation shows that the vibronic effect of H_(2)O is slightly stronger than that of D_(2)O,which exhibits a clear isotopic effect.展开更多
Fano resonance is a ubiquitous phenomenon, and it is commonly interpreted as a two-channel interference of the discrete and continuous channels. The present work investigates the Fano profile from a perspective of the...Fano resonance is a ubiquitous phenomenon, and it is commonly interpreted as a two-channel interference of the discrete and continuous channels. The present work investigates the Fano profile from a perspective of the temporal evolution of the wave function. By exciting the atom with a δ pulse and calculating the evolution of the wave function, the Fano formula is deduced. The results clearly show that the Fano resonance is of a three-channel interference, which is different from the traditional understanding. The three channels are revealed as the groundcontinuum, ground-discrete-continuum, and a previously unmentioned third channel, i.e., ground-continuumdiscrete-continuum. The present three-channel interpretation can be easily generalized to other physical systems,contributing to a deeper understanding of the Fano profile.展开更多
Dielectronic recombination(DR)is one of the dominant electron-ion recombination mechanisms for most highly charged ions(HCIs)in cosmic plasmas,and thus,it determines the charge state distribution and ionization balanc...Dielectronic recombination(DR)is one of the dominant electron-ion recombination mechanisms for most highly charged ions(HCIs)in cosmic plasmas,and thus,it determines the charge state distribution and ionization balance therein.To reliably interpret spectra from cosmic sources and model the astrophysical plasmas,precise DR rate coefficients are required to build up an accurate understanding of the ionization balance of the sources.The main cooler storage ring(CSRm)and the experimental cooler storage ring(CSRe)at the Heavy-Ion Research Facility in Lanzhou(HIRFL)are both equipped with electron cooling devices,which provide an excellent experimental platform for electron-ion collision studies for HCIs.Here,the status of the DR experiments at the HIRFL-CSR is outlined,and the DR measurements with Na-like Kr25^(+)ions at the CSRm and CSRe are taken as examples.In addition,the plasma recombination rate coefficients for Ar12^(+),14^(+),Ca14^(+),16^(+),17^(+),Ni19^(+),and Kr25^(+)ions obtained at the HIRFL-CSR are provided.All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00092.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12334010,12174259,and 11604003)。
文摘The generalized oscillator strengths of the dipole-forbidden excitations of the ^(1)A_(2) of H_(2)O and D_(2)O were calculated with the time dependent density functional theory,by taking into account the vibronic effect.It is found that the vibronic effect converts the dipole-forbidden excitation of the ^(1)A_(2) into a dipole-allowed one,which enhances the intensities of the corresponding generalized oscillator strength in the small squared momentum transfer region.The present investigation shows that the vibronic effect of H_(2)O is slightly stronger than that of D_(2)O,which exhibits a clear isotopic effect.
基金supported by the National Natural Science Foundation of China (Grant No. 12334010)。
文摘Fano resonance is a ubiquitous phenomenon, and it is commonly interpreted as a two-channel interference of the discrete and continuous channels. The present work investigates the Fano profile from a perspective of the temporal evolution of the wave function. By exciting the atom with a δ pulse and calculating the evolution of the wave function, the Fano formula is deduced. The results clearly show that the Fano resonance is of a three-channel interference, which is different from the traditional understanding. The three channels are revealed as the groundcontinuum, ground-discrete-continuum, and a previously unmentioned third channel, i.e., ground-continuumdiscrete-continuum. The present three-channel interpretation can be easily generalized to other physical systems,contributing to a deeper understanding of the Fano profile.
基金supported by the National Natural Science Foundation of China (Grant Nos. U1932207, 11904371, and 12104437)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB34020000)
文摘Dielectronic recombination(DR)is one of the dominant electron-ion recombination mechanisms for most highly charged ions(HCIs)in cosmic plasmas,and thus,it determines the charge state distribution and ionization balance therein.To reliably interpret spectra from cosmic sources and model the astrophysical plasmas,precise DR rate coefficients are required to build up an accurate understanding of the ionization balance of the sources.The main cooler storage ring(CSRm)and the experimental cooler storage ring(CSRe)at the Heavy-Ion Research Facility in Lanzhou(HIRFL)are both equipped with electron cooling devices,which provide an excellent experimental platform for electron-ion collision studies for HCIs.Here,the status of the DR experiments at the HIRFL-CSR is outlined,and the DR measurements with Na-like Kr25^(+)ions at the CSRm and CSRe are taken as examples.In addition,the plasma recombination rate coefficients for Ar12^(+),14^(+),Ca14^(+),16^(+),17^(+),Ni19^(+),and Kr25^(+)ions obtained at the HIRFL-CSR are provided.All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00113.00092.