Developing efficient water-splitting electrocatalysts with high mass activity is in urgent need for largescale sustainable production of hydrogen but,still remains as a big challenge.Herein,we report a one-pot method ...Developing efficient water-splitting electrocatalysts with high mass activity is in urgent need for largescale sustainable production of hydrogen but,still remains as a big challenge.Herein,we report a one-pot method to fabricate a series of core@shell Ni@RuM(M=Ni or Co)nanocrystals(NCs)with Ni as the core and tunable RuM(M=Ni or Co)as the alloy shell for efficient water-splitting catalysis.Among these core@shell NCs,the obtained Ni@Ru Ni NCs exhibit the highest intrinsic activity for hydrogen evolution reaction(HER)and possess an outstanding mass activity of 1590 m A mgRu^-1 at 0.07 V vs.reversible hydrogen electrode(RHE),which is 1.7 times higher than that of commercial Pt/C(950 m A mgPt^-1).As for oxygen evolution reaction(OER),the prepared Ni@Ru0.4 Co0.6 NCs with optimized shell composition achieve more enhanced mass activity of 270 m A mgRu^-1 at1.56 V vs.RHE,approaching three times higher than that of commercial RuO2(89 m A mgRu^-1).The superb mass activity of these Ni@Ru M(M=Ni or Co)NCs can be attributed to their core@shell structure and modulated electronic structure through alloying with Ni or Co metal in the shell.展开更多
基金funding from the National Natural Science Foundation of China (21427811, 21721003 and 51671003)the Ministry of Science and Technology, China (2016YFA0203200)+1 种基金the Youth Innovation Promotion Association CAS (2016208)Jilin Province Science Technology Development Plan Project (20170101194JC)
文摘Developing efficient water-splitting electrocatalysts with high mass activity is in urgent need for largescale sustainable production of hydrogen but,still remains as a big challenge.Herein,we report a one-pot method to fabricate a series of core@shell Ni@RuM(M=Ni or Co)nanocrystals(NCs)with Ni as the core and tunable RuM(M=Ni or Co)as the alloy shell for efficient water-splitting catalysis.Among these core@shell NCs,the obtained Ni@Ru Ni NCs exhibit the highest intrinsic activity for hydrogen evolution reaction(HER)and possess an outstanding mass activity of 1590 m A mgRu^-1 at 0.07 V vs.reversible hydrogen electrode(RHE),which is 1.7 times higher than that of commercial Pt/C(950 m A mgPt^-1).As for oxygen evolution reaction(OER),the prepared Ni@Ru0.4 Co0.6 NCs with optimized shell composition achieve more enhanced mass activity of 270 m A mgRu^-1 at1.56 V vs.RHE,approaching three times higher than that of commercial RuO2(89 m A mgRu^-1).The superb mass activity of these Ni@Ru M(M=Ni or Co)NCs can be attributed to their core@shell structure and modulated electronic structure through alloying with Ni or Co metal in the shell.