期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于自适应融合的实时车辆检测
1
作者
陈婷
朱熟康
+3 位作者
高涛
李浩
涂辉招
李子琦
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024年第4期532-540,共9页
针对传统的车辆检测技术检测速度慢和精度低的问题,提出了一种融合注意力的自适应金字塔网络的交通目标检测算法(fusion attentiont adaptive pyramid network,FAAP-Net),可以显著降低交通事故的发生率。为了降低计算复杂度,设计了一种...
针对传统的车辆检测技术检测速度慢和精度低的问题,提出了一种融合注意力的自适应金字塔网络的交通目标检测算法(fusion attentiont adaptive pyramid network,FAAP-Net),可以显著降低交通事故的发生率。为了降低计算复杂度,设计了一种轻量级的互补池化结构(CPS),该结构在宽度和高度上采用了两组不同的池化组合,在保持高精度的同时,显著降低了网络的浮点运算数(GFLOPs)和参数量。为了解决智能交通系统特征图生成过程中的信息损失问题,通过将自适应注意力模块(AAM)和特征增强模块(FEM)引入自适应融合特征金字塔网络(AF-FPN),以融入车辆检测的形状特征。针对车辆细节特征表征弱的问题,引入了一种按通道维度分组的注意力(SA)机制,以增强主干网络对不同车辆检测细节特征的关注,有效提取车辆细节的显著特征。在BDD100K数据集上的实验结果表明,FAAP-Net算法相比于传统算法,平均精度从30.3%提升到43.7%。
展开更多
关键词
目标检测
车辆检测
互补池化
自适应融合
通道维度分组注意力
下载PDF
职称材料
基于语义引导神经网络的人体动作识别算法
被引量:
1
2
作者
郭宗洋
刘立东
+3 位作者
蒋东华
刘子翔
朱熟康
陈京华
《图学学报》
CSCD
北大核心
2024年第1期26-34,共9页
近年来,采用深度前馈神经网络对骨骼关节的三维坐标建模成为了一种趋势。但网络识别准确率低、巨大的参数量以及实时性差仍然是基于骨骼数据动作识别领域中急需解决的问题。为此,提出一种基于语义引导神经网络(SGN)改进的网络模型。首先...
近年来,采用深度前馈神经网络对骨骼关节的三维坐标建模成为了一种趋势。但网络识别准确率低、巨大的参数量以及实时性差仍然是基于骨骼数据动作识别领域中急需解决的问题。为此,提出一种基于语义引导神经网络(SGN)改进的网络模型。首先,在原网络中引入了非局部特征提取模块用于增强其在高级语义指导模型训练和预测的表现,降低了其在自然语言处理任务中的计算复杂性和推理时间;其次,引入注意力机制学习每个图卷积网络层的通道权重并减少通道间的冗余信息,进一步提高模型的计算效率和识别准确率;此外,以可变形卷积模块动态学习不同图卷积网络(GCN)层通道的权重,并有效地聚合不同通道中的关节特征用于网络最后的分类识别,从而提高特征信息的利用率。最后,在NTU RGB+D和NTU RGB+D 120公开数据集上进行人体动作识别实验。实验结果表明,所提出的网络比大多数网络小一个数量级,并且在识别准确率上明显优于原网络和其他一些先进的算法。
展开更多
关键词
人体动作识别
图卷积网络
语义引导神经网络
非局部特征提取
注意力机制
可变形卷积
下载PDF
职称材料
题名
基于自适应融合的实时车辆检测
1
作者
陈婷
朱熟康
高涛
李浩
涂辉招
李子琦
机构
长安大学信息工程学院
同济大学交通运输工程学院
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024年第4期532-540,共9页
基金
国家重点研发计划(2023YFB2504703,2019YFE0108300)
国家自然科学基金(52172379,62001058)
中央高校基本科研业务费专项资金(300102241201,310833160212)。
文摘
针对传统的车辆检测技术检测速度慢和精度低的问题,提出了一种融合注意力的自适应金字塔网络的交通目标检测算法(fusion attentiont adaptive pyramid network,FAAP-Net),可以显著降低交通事故的发生率。为了降低计算复杂度,设计了一种轻量级的互补池化结构(CPS),该结构在宽度和高度上采用了两组不同的池化组合,在保持高精度的同时,显著降低了网络的浮点运算数(GFLOPs)和参数量。为了解决智能交通系统特征图生成过程中的信息损失问题,通过将自适应注意力模块(AAM)和特征增强模块(FEM)引入自适应融合特征金字塔网络(AF-FPN),以融入车辆检测的形状特征。针对车辆细节特征表征弱的问题,引入了一种按通道维度分组的注意力(SA)机制,以增强主干网络对不同车辆检测细节特征的关注,有效提取车辆细节的显著特征。在BDD100K数据集上的实验结果表明,FAAP-Net算法相比于传统算法,平均精度从30.3%提升到43.7%。
关键词
目标检测
车辆检测
互补池化
自适应融合
通道维度分组注意力
Keywords
object detection
vehicle detection
complementary pooling
adaptive fusion
shuffle attention
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
基于语义引导神经网络的人体动作识别算法
被引量:
1
2
作者
郭宗洋
刘立东
蒋东华
刘子翔
朱熟康
陈京华
机构
长安大学信息工程学院
中山大学计算机学院
出处
《图学学报》
CSCD
北大核心
2024年第1期26-34,共9页
基金
国家自然科学基金项目(52172379)。
文摘
近年来,采用深度前馈神经网络对骨骼关节的三维坐标建模成为了一种趋势。但网络识别准确率低、巨大的参数量以及实时性差仍然是基于骨骼数据动作识别领域中急需解决的问题。为此,提出一种基于语义引导神经网络(SGN)改进的网络模型。首先,在原网络中引入了非局部特征提取模块用于增强其在高级语义指导模型训练和预测的表现,降低了其在自然语言处理任务中的计算复杂性和推理时间;其次,引入注意力机制学习每个图卷积网络层的通道权重并减少通道间的冗余信息,进一步提高模型的计算效率和识别准确率;此外,以可变形卷积模块动态学习不同图卷积网络(GCN)层通道的权重,并有效地聚合不同通道中的关节特征用于网络最后的分类识别,从而提高特征信息的利用率。最后,在NTU RGB+D和NTU RGB+D 120公开数据集上进行人体动作识别实验。实验结果表明,所提出的网络比大多数网络小一个数量级,并且在识别准确率上明显优于原网络和其他一些先进的算法。
关键词
人体动作识别
图卷积网络
语义引导神经网络
非局部特征提取
注意力机制
可变形卷积
Keywords
human action recognition
graph convolutional network
semantics guided neural network
non-local feature extraction
attention mechanism
deformable convolution
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于自适应融合的实时车辆检测
陈婷
朱熟康
高涛
李浩
涂辉招
李子琦
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
2
基于语义引导神经网络的人体动作识别算法
郭宗洋
刘立东
蒋东华
刘子翔
朱熟康
陈京华
《图学学报》
CSCD
北大核心
2024
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部