期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
聚乙烯醇/壳聚糖膜制备及其包膜尿素特性 被引量:2
1
作者 张阳 张旭 +3 位作者 韩效钊 沈兆曦 张祥路 朱稳定 《农业工程学报》 EI CAS CSCD 北大核心 2024年第9期128-136,共9页
为解决传统肥料养分利用率低,以及一般聚合物包膜肥料的膜材料难以降解、养分释放速率不可控等问题,该研究以聚乙烯醇(PVA)为膜基材,通过与壳聚糖(CS)共混、使用戊二醛(GA)交联、添加纳米SiO_(2)3种不同的方式,制备了3种膜:PVA/CS膜、PV... 为解决传统肥料养分利用率低,以及一般聚合物包膜肥料的膜材料难以降解、养分释放速率不可控等问题,该研究以聚乙烯醇(PVA)为膜基材,通过与壳聚糖(CS)共混、使用戊二醛(GA)交联、添加纳米SiO_(2)3种不同的方式,制备了3种膜:PVA/CS膜、PVA/CS/GA膜、PVA/CS/GA/纳米SiO_(2)膜,此外,制备了纯PVA膜作为对比。对4种膜进行了吸水率(Q)、生物降解性(De)、养分渗透系数(Ps)等表征,结果表明:CS的添加提升了膜的生物降解率,GA交联可以延缓膜在土壤中的生物降解速率,而纳米SiO_(2)的添加对膜的生物降解性影响不大,总体来说4种膜都显示出良好的生物降解性(77 d内的生物降解率在30%~60%);相比于PVA膜,PVA/CS、PVA/CS/GA和PVA/CS/GA/纳米SiO_(2)膜的吸水率分别降低43.00%、68.79%和82.73%;相比于PVA/CS膜,PVA/CS/GA和PVA/CS/GA/纳米SiO_(2)膜的养分渗透系数分别降低48.51%和57.59%,说明CS的添加、GA的交联和纳米SiO_(2)的添加都增强了PVA膜的疏水性。将4种膜液通过转鼓包衣机包覆在尿素颗粒表面制得了4种包膜尿素(PCU)颗粒(PCU-PVA、PCU-PVA/CS、PCUPVA/CS/GA和PCU-PVA/CS/GA/纳米SiO_(2)),分别使用土埋法测定和数学模型拟合了氮素释放行为,结果显示4种PCU的氮释放量达到90%时所需的时间分别为5、11、23、28 d;氮素释放行为符合一级动力学模型,释放速率常数(k)依次减小,分别为0.3654、0.2333、0.1127、0.0926,且与膜的养分渗透系数(Ps)呈线性关系,相关系数(R2)为0.9991。该研究提供了系列生物降解性能良好、养分释放速率可控的聚乙烯醇/壳聚糖膜材料,并成功地应用于包膜尿素颗粒的制备,更方便和有效地指导PCU的施用。 展开更多
关键词 肥料 聚乙烯醇 壳聚糖 缓释 控释 包膜
下载PDF
磺化聚砜/Ti_(3)C_(2)T_(x)阳离子交换膜的制备及应用研究
2
作者 张祥路 张旭 +3 位作者 袁玉婷 包志琦 朱稳定 张阳 《现代化工》 CAS CSCD 北大核心 2024年第11期123-128,共6页
通过MILD法(制备过程较为温和)从MAX相制备了常见的MXene-Ti_(3)C_(2)T_(x),并对该Ti_(3)C_(2)T_(x)进行了FE-SEM、TEM、AFM、XRD、XPS表征。通过流涎法制备了磺化聚砜(SPSF)/Ti_(3)C_(2)T_(x)阳离子交换膜,并对膜进行形貌、理化性能表... 通过MILD法(制备过程较为温和)从MAX相制备了常见的MXene-Ti_(3)C_(2)T_(x),并对该Ti_(3)C_(2)T_(x)进行了FE-SEM、TEM、AFM、XRD、XPS表征。通过流涎法制备了磺化聚砜(SPSF)/Ti_(3)C_(2)T_(x)阳离子交换膜,并对膜进行形貌、理化性能表征。将SPSF/Ti_(3)C_(2)T_(x)膜应用于电渗析脱盐过程,考察膜堆电压、脱盐率、电流效率和能耗。结果表明,MILD法刻蚀得到的Ti_(3)C_(2)T_(x)片是单层或少层的,并且与SPSF相容性良好;当Ti_(3)C_(2)T_(x)添加量为2.0%时,膜(SPSF/Ti_(3)C_(2)T_(x)-2.0%膜)的离子交换容量最高(1.37 mmol/g)、面电阻最低(7.07Ω·cm^(2)),在电渗析脱盐过程中的脱盐率(80.12%)和电流效率(90.03%)最高、能耗最低(10.98 kWh/kg)。 展开更多
关键词 MXene 阳离子交换膜 电渗析 脱盐
下载PDF
耐Al-10%Si合金熔体腐蚀的合成灰铸铁研究 被引量:1
3
作者 范晓明 朱稳定 +4 位作者 陈启超 黄年喜 李嘉臻 赵彤 叶沛沂 《热加工工艺》 北大核心 2020年第12期53-56,61,共5页
采用中频感应电炉熔炼,以废钢、高纯生铁为主要炉料制备了碳当量分别为3.86%和4.28%的2种合成灰铸铁,测试了其成分、组织与力学性能;利用静态熔体浸泡法研究了合成灰铸铁耐Al-10%Si合金熔体腐蚀的性能。结果表明,两种合成灰铸铁的铸态... 采用中频感应电炉熔炼,以废钢、高纯生铁为主要炉料制备了碳当量分别为3.86%和4.28%的2种合成灰铸铁,测试了其成分、组织与力学性能;利用静态熔体浸泡法研究了合成灰铸铁耐Al-10%Si合金熔体腐蚀的性能。结果表明,两种合成灰铸铁的铸态显微组织主要为珠光体基体和粗大的A型石墨,石墨长度达到4级;其铸态抗拉强度均大于300 MPa。合成灰铸铁试样在Al-10%Si合金熔体中浸泡一定时间后,其基体的布氏硬度较未浸泡试样明显下降,组织中渗碳体出现分解、粒化。相比较而言,高碳当量、合金含量较高的合成灰铸铁的A型石墨更长,力学性能更好,表现出较好的耐铝硅合金熔体腐蚀性。 展开更多
关键词 合成灰铸铁 显微组织 力学性能 静态熔体浸泡法 耐铝硅合金熔体腐蚀
下载PDF
GX40CrNiSi25-20奥氏体不锈钢的高温氧化性能研究 被引量:6
4
作者 陈启超 游程超 +2 位作者 范晓明 李嘉臻 朱稳定 《中国铸造装备与技术》 CAS 2019年第2期9-14,共6页
采用不连续恒温氧化增重法研究了GX40CrNiSi25-20奥氏体不锈钢在不同温度和氧化时间条件下的抗高温氧化性能。结果表明,其氧化动力学曲线遵循抛物线规律。试样在700℃、900℃、1100℃下氧化100h后,其氧化增重分别为0.143mg/cm^2、0.323m... 采用不连续恒温氧化增重法研究了GX40CrNiSi25-20奥氏体不锈钢在不同温度和氧化时间条件下的抗高温氧化性能。结果表明,其氧化动力学曲线遵循抛物线规律。试样在700℃、900℃、1100℃下氧化100h后,其氧化增重分别为0.143mg/cm^2、0.323mg/cm^2和0.813mg/cm^2;表面氧化程度随着氧化温度的增加逐渐增大;氧化膜的主要物相分别为NiO、Fe_(0.98)O、Cr_2O_3和Fe_(0.64)Ni_(0.36)奥氏体相,Fe_2O_3、Fe_3O_4、Cr_2O_3和尖晶石结构(FeCr_2O_4、NiCr_2O_4),以及Fe_2O_3、FeO、Cr_2O_3和尖晶石结构。生成的Cr_2O_3和尖晶石结构等产物使材料具有良好的高温抗氧化性能。 展开更多
关键词 奥氏体不锈钢 高温氧化 氧化膜
下载PDF
Amplitude analysis of the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)
5
作者 M.Ablikim M.N.Achasov +642 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang W.L.Chang G.R.Che G.Chelkov C.Chen C.H.Chen Chao Chen G.Chen H.S.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi X.Chu G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng Y.T.Feng K.Fischer M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Z.H.Duan P.Egorov Y.H.Fan J.Fang JA.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan Z.L.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang T.Hussain F.H\"olzken N.H\"usken N.in der Wiesche M.Irshad J.Jackson S.Janchiv J.H.Jeong Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui A.Kupsc W.K\"uhn J.J.Lane P.Larin L.Lavezzi T.T.Lei Z.H.Lei H.Leithoff M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li K.Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Y.Li Y.G.Li Z.J.Li Z.X.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao Y.P.Liao J.Libby A.Limphirat D.X.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.Liu F.H.Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.H.Liu H.M.Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu X.Liu X.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma X.T.Ma X.Y.Ma Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Malde A.Mangoni Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak P.Patteri Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao J.J.Qin L.Q.Qin X.S.Qin Z.H.Qin J.F.Qiu S.Q.Qu Z.H.Qu C.F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.C.Shi J.L.Shi J.Y.Shi Q.Q.Shi R.S.Shi S.Y.Shi X.Shi X.D.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang D.Y.Wang F.Wang H.J.Wang J.P.Wang K.Wang L.L.Wang M.Wang Meng Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.Wei D.H.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.C.Xu Z.P.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang T.Yang Y.Yang Y.F.Yang Y.F.Yang Y.X.Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu X.D.Yu C.Z.Yuan J.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang P.Zhang Q.Y.Zhang S.H.Zhang Shulei Zhang X.D.Zhang X.M.Zhang X.Y.Zhang Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Yan Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang G.Zhao J.Y.Zhao J.Z.Zhao L.Zhao Lei Zhao M.G.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong H.Zhou J.Y.Zhou L.P.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou J.Zhu K.Zhu K.J.Zhu L.Zhu L.X.Zhu S.H.Zhu S.Q.Zhu T.J.Zhu W.D.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu 《Chinese Physics C》 SCIE CAS CSCD 2024年第8期6-33,共28页
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays... Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay. 展开更多
关键词 BESIII D^(0)meson decays amplitude analysis CP-even fraction
原文传递
Determination of the number ofψ(3686)events taken at BESⅢ
6
作者 M.Ablikim M.N.Achasov +660 位作者 P.Adlarson O.Afedulidis X.C.Ai R.Aliberti A.Amoroso Q.An Y.Bai O.Bakina I.Balossino Y.Ban H.-R.Bao V.Batozskaya K.Begzsuren N.Berger M.Berlowski M.Bertani D.Bettoni F.Bianchi E.Bianco A.Bortone I.Boyko R.A.Briere A.Brueggemann H.Cai X.Cai A.Calcaterra G.F.Cao N.Cao S.A.Cetin J.F.Chang G.R.Che G.Chelkov C.Chen C.H.Chen Chao Chen G.Chen H.S.Chen H.Y.Chen M.L.Chen S.J.Chen S.L.Chen S.M.Chen T.Chen X.R.Chen X.T.Chen Y.B.Chen Y.Q.Chen Z.J.Chen Z.Y.Chen S.K.Choi G.Cibinetto F.Cossio J.J.Cui H.L.Dai J.P.Dai A.Dbeyssi R.E.de Boer D.Dedovich C.Q.Deng Z.Y.Deng A.Denig I.Denysenko M.Destefanis F.De Mori B.Ding X.X.Ding Y.Ding Y.Ding J.Dong L.Y.Dong M.Y.Dong X.Dong M.C.Du S.X.Du Y.Y.Duan Z.H.Duan P.Egorov Y.H.Fan J.Fang J.Fang S.S.Fang W.X.Fang Y.Fang Y.Q.Fang R.Farinelli L.Fava F.Feldbauer G.Felici C.Q.Feng J.H.Feng Y.T.Feng M.Fritsch C.D.Fu J.L.Fu Y.W.Fu H.Gao X.B.Gao Y.N.Gao Yang Gao S.Garbolino I.Garzia L.Ge P.T.Ge Z.W.Ge C.Geng E.M.Gersabeck A.Gilman K.Goetzen L.Gong W.X.Gong W.Gradl S.Gramigna M.Greco M.H.Gu Y.T.Gu C.Y.Guan Z.L.Guan A.Q.Guo L.B.Guo M.J.Guo R.P.Guo Y.P.Guo A.Guskov J.Gutierrez K.L.Han T.T.Han F.Hanisch X.Q.Hao F.A.Harris K.K.He K.L.He F.H.Heinsius C.H.Heinz Y.K.Heng C.Herold T.Holtmann P.C.Hong G.Y.Hou X.T.Hou Y.R.Hou Z.L.Hou B.Y.Hu H.M.Hu J.F.Hu S.L.Hu T.Hu Y.Hu G.S.Huang K.X.Huang L.Q.Huang X.T.Huang Y.P.Huang T.Hussain F.Hölzken N.Hüsken N.in der Wiesche J.Jackson S.Janchiv J.H.Jeong Q.Ji Q.P.Ji W.Ji X.B.Ji X.L.Ji Y.Y.Ji X.Q.Jia Z.K.Jia D.Jiang H.B.Jiang P.C.Jiang S.S.Jiang T.J.Jiang X.S.Jiang Y.Jiang J.B.Jiao J.K.Jiao Z.Jiao S.Jin Y.Jin M.Q.Jing X.M.Jing T.Johansson S.Kabana N.Kalantar-Nayestanaki X.L.Kang X.S.Kang M.Kavatsyuk B.C.Ke V.Khachatryan A.Khoukaz R.Kiuchi O.B.Kolcu B.Kopf M.Kuessner X.Kui N.Kumar A.Kupsc W.Kühn J.J.Lane P.Larin L.Lavezzi T.T.Lei Z.H.Lei M.Lellmann T.Lenz C.Li C.Li C.H.Li Cheng Li D.M.Li F.Li G.Li H.B.Li H.J.Li H.N.Li Hui Li J.R.Li J.S.Li Ke Li L.J.Li L.K.Li Lei Li M.H.Li P.R.Li Q.M.Li Q.X.Li R.Li S.X.Li T.Li W.D.Li W.G.Li X.Li X.H.Li X.L.Li X.Z.Li Xiaoyu Li Y.G.Li Z.J.Li Z.X.Li Z.Y.Li C.Liang H.Liang H.Liang Y.F.Liang Y.T.Liang G.R.Liao L.Z.Liao Y.P.Liao J.Libby A.Limphirat C.C.Lin D.X.Lin T.Lin B.J.Liu B.X.Liu C.Liu C.X.Liu F.H.Liu Fang Liu Feng Liu G.M.Liu H.Liu H.B.Liu H.M.Liu Huanhuan Liu Huihui Liu J.B.Liu J.Y.Liu K.Liu K.Y.Liu Ke Liu L.Liu L.C.Liu Lu Liu M.H.Liu P.L.Liu Q.Liu S.B.Liu T.Liu W.K.Liu W.M.Liu X.Liu X.Liu Y.Liu Y.Liu Y.B.Liu Z.A.Liu Z.D.Liu Z.Q.Liu X.C.Lou F.X.Lu H.J.Lu J.G.Lu X.L.Lu Y.Lu Y.P.Lu Z.H.Lu C.L.Luo J.R.Luo M.X.Luo T.Luo X.L.Luo X.R.Lyu Y.F.Lyu F.C.Ma H.Ma H.L.Ma J.L.Ma L.L.Ma M.M.Ma Q.M.Ma R.Q.Ma T.Ma X.T.Ma X.Y.Ma Y.Ma Y.M.Ma F.E.Maas M.Maggiora S.Malde Y.J.Mao Z.P.Mao S.Marcello Z.X.Meng J.G.Messchendorp G.Mezzadri H.Miao T.J.Min R.E.Mitchell X.H.Mo B.Moses N.Yu.Muchnoi J.Muskalla Y.Nefedov F.Nerling L.S.Nie I.B.Nikolaev Z.Ning S.Nisar Q.L.Niu W.D.Niu Y.Niu S.L.Olsen Q.Ouyang S.Pacetti X.Pan Y.Pan A.Pathak P.Patteri Y.P.Pei M.Pelizaeus H.P.Peng Y.Y.Peng K.Peters J.L.Ping R.G.Ping S.Plura V.Prasad F.Z.Qi H.Qi H.R.Qi M.Qi T.Y.Qi S.Qian W.B.Qian C.F.Qiao X.K.Qiao J.J.Qin L.Q.Qin L.Y.Qin X.S.Qin Z.H.Qin J.F.Qiu Z.H.Qu C.F.Redmer K.J.Ren A.Rivetti M.Rolo G.Rong Ch.Rosner S.N.Ruan N.Salone A.Sarantsev Y.Schelhaas K.Schoenning M.Scodeggio K.Y.Shan W.Shan X.Y.Shan Z.J.Shang J.F.Shangguan L.G.Shao M.Shao C.P.Shen H.F.Shen W.H.Shen X.Y.Shen B.A.Shi H.Shi H.C.Shi J.L.Shi J.Y.Shi Q.Q.Shi S.Y.Shi X.Shi J.J.Song T.Z.Song W.M.Song Y.J.Song Y.X.Song S.Sosio S.Spataro F.Stieler Y.J.Su G.B.Sun G.X.Sun H.Sun H.K.Sun J.F.Sun K.Sun L.Sun S.S.Sun T.Sun W.Y.Sun Y.Sun Y.J.Sun Y.Z.Sun Z.Q.Sun Z.T.Sun C.J.Tang G.Y.Tang J.Tang M.Tang Y.A.Tang L.Y.Tao Q.T.Tao M.Tat J.X.Teng V.Thoren W.H.Tian Y.Tian Z.F.Tian I.Uman Y.Wan S.J.Wang B.Wang B.L.Wang Bo Wang D.Y.Wang F.Wang H.J.Wang J.J.Wang J.P.Wang K.Wang L.L.Wang M.Wang N.Y.Wang S.Wang S.Wang T.Wang T.J.Wang W.Wang W.Wang W.P.Wang X.Wang X.F.Wang X.J.Wang X.L.Wang X.N.Wang Y.Wang Y.D.Wang Y.F.Wang Y.L.Wang Y.N.Wang Y.Q.Wang Yaqian Wang Yi Wang Z.Wang Z.L.Wang Z.Y.Wang Ziyi Wang D.H.Wei F.Weidner S.P.Wen Y.R.Wen U.Wiedner G.Wilkinson M.Wolke L.Wollenberg C.Wu J.F.Wu L.H.Wu L.J.Wu X.Wu X.H.Wu Y.Wu Y.H.Wu Y.J.Wu Z.Wu L.Xia X.M.Xian B.H.Xiang T.Xiang D.Xiao G.Y.Xiao S.Y.Xiao Y.L.Xiao Z.J.Xiao C.Xie X.H.Xie Y.Xie Y.G.Xie Y.H.Xie Z.P.Xie T.Y.Xing C.F.Xu C.J.Xu G.F.Xu H.Y.Xu M.Xu Q.J.Xu Q.N.Xu W.Xu W.L.Xu X.P.Xu Y.C.Xu Z.P.Xu Z.S.Xu F.Yan L.Yan W.B.Yan W.C.Yan X.Q.Yan H.J.Yang H.L.Yang H.X.Yang Tao Yang Y.Yang Y.F.Yang Y.X.Yang Yifan Yang Z.W.Yang Z.P.Yao M.Ye M.H.Ye J.H.Yin Z.Y.You B.X.Yu C.X.Yu G.Yu J.S.Yu T.Yu X.D.Yu Y.C.Yu C.Z.Yuan J.Yuan J.Yuan L.Yuan S.C.Yuan Y.Yuan Z.Y.Yuan C.X.Yue A.A.Zafar F.R.Zeng S.H.Zeng X.Zeng Y.Zeng Y.J.Zeng Y.J.Zeng X.Y.Zhai Y.C.Zhai Y.H.Zhan A.Q.Zhang B.L.Zhang B.X.Zhang D.H.Zhang G.Y.Zhang H.Zhang H.Zhang H.C.Zhang H.H.Zhang H.H.Zhang H.Q.Zhang H.R.Zhang H.Y.Zhang J.Zhang J.Zhang J.J.Zhang J.L.Zhang J.Q.Zhang J.S.Zhang J.W.Zhang J.X.Zhang J.Y.Zhang J.Z.Zhang Jianyu Zhang L.M.Zhang Lei Zhang P.Zhang Q.Y.Zhang R.Y.Zhang Shuihan Zhang Shulei Zhang X.D.Zhang X.M.Zhang X.Y.Zhang Y.Zhang Y.T.Zhang Y.H.Zhang Y.M.Zhang Yan Zhang Yao Zhang Z.D.Zhang Z.H.Zhang Z.L.Zhang Z.Y.Zhang Z.Y.Zhang Z.Z.Zhang G.Zhao J.Y.Zhao J.Z.Zhao Lei Zhao Ling Zhao M.G.Zhao N.Zhao R.P.Zhao S.J.Zhao Y.B.Zhao Y.X.Zhao Z.G.Zhao A.Zhemchugov B.Zheng B.M.Zheng J.P.Zheng W.J.Zheng Y.H.Zheng B.Zhong X.Zhong H.Zhou J.Y.Zhou L.P.Zhou S.Zhou X.Zhou X.K.Zhou X.R.Zhou X.Y.Zhou Y.Z.Zhou J.Zhu K.Zhu K.J.Zhu K.S.Zhu L.Zhu L.X.Zhu S.H.Zhu S.Q.Zhu T.J.Zhu W.D.Zhu Y.C.Zhu Z.A.Zhu J.H.Zou J.Zu 《Chinese Physics C》 SCIE CAS CSCD 2024年第9期8-20,共13页
The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the ... The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6. 展开更多
关键词 ψ(3686) inclusive process Hadronic events BESⅢdetector
原文传递
通过5-氨基-4-甲酰基咪唑盐酸盐提高可印刷介观钙钛矿太阳能电池的光伏性能
7
作者 郭荣荣 张声建 +11 位作者 陈怡文 王栋杰 吴晨术 王陇博 陶莹 朱稳定 张浩华 陈长青 熊健 张哲泠 黄瑜 张坚 《Science China Materials》 SCIE EI CAS CSCD 2023年第12期4622-4629,共8页
基于m-TiO_(2)/m-ZrO_(2)/C的无空穴可印刷介观钙钛矿太阳能电池(p-MPSCs)具有成本低廉、操作简便和稳定性优异的特点,被认为是最具商业应用潜力的新型光伏器件之一.然而,与传统PSC相比,p-MPSCs的开路电压(VOC)损失较大,导致能量转换效... 基于m-TiO_(2)/m-ZrO_(2)/C的无空穴可印刷介观钙钛矿太阳能电池(p-MPSCs)具有成本低廉、操作简便和稳定性优异的特点,被认为是最具商业应用潜力的新型光伏器件之一.然而,与传统PSC相比,p-MPSCs的开路电压(VOC)损失较大,导致能量转换效率(PCE)与传统PSC存在差距.在此,我们提出了一种利用5-氨基-4甲酰胺咪唑盐酸盐(AICA)提升p-MPSCs开路电压的方法.AICA不仅可以调节钙钛矿膜的功函数,其酰胺基团和氨基还能分别钝化钙钛矿中未配位的Pb2+和I−缺陷,稳定钙钛矿的结构,形成高质量钙钛矿薄膜,从而抑制缺陷诱导的非辐射复合.因此,引入AICA后p-MPSCs获得了16.68%的PCE,并且VOC从0.88提升至0.98 V. 展开更多
关键词 mesoscopic perovskite solar cells ADDITIVES opencircuit voltage defect passivation
原文传递
新型无磁奥氏体不锈钢的研究 被引量:2
8
作者 范晓明 李嘉臻 +2 位作者 陈涛 朱稳定 王信伟 《特种铸造及有色合金》 CAS 北大核心 2019年第7期723-726,共4页
通过中频感应炉熔炼合金,采用熔模铸造工艺制备了新型无磁奥氏体不锈钢试块。采用金相显微镜、X射线衍射仪、Instron5882万能材料试验机和振动试验磁强计等手段,分析了铸态和固溶态304奥氏体不锈钢的显微组织、力学性能和相对磁导率;然... 通过中频感应炉熔炼合金,采用熔模铸造工艺制备了新型无磁奥氏体不锈钢试块。采用金相显微镜、X射线衍射仪、Instron5882万能材料试验机和振动试验磁强计等手段,分析了铸态和固溶态304奥氏体不锈钢的显微组织、力学性能和相对磁导率;然后以304奥氏体不锈钢为基材,通过调整Mn、Ni、Cu等主要合金元素的含量,制备出一种新型的铸态无磁奥氏体不锈钢。结果表明,经1 200℃固溶4h的304奥氏体不锈钢试样的相对磁导率为1.008 7,达到了无磁材料的要求(μr≤1.02),且力学性能优良;铸态新型无磁奥氏体不锈钢的相对磁导率为1.006 6,力学性能良好。 展开更多
关键词 304不锈钢 固溶处理 化学成分 相对磁导率
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部