采用热重分析(TG-DTG)对废轮胎和生物质的热解特性进行了分析,研究了原料配比、升温速率及粒度对热解的影响,并采用HSC计算模拟软件对热解气体的分布规律进行了模拟。研究结果表明:废轮胎与生物质共热解过程主要分为干燥阶段(20~200℃)...采用热重分析(TG-DTG)对废轮胎和生物质的热解特性进行了分析,研究了原料配比、升温速率及粒度对热解的影响,并采用HSC计算模拟软件对热解气体的分布规律进行了模拟。研究结果表明:废轮胎与生物质共热解过程主要分为干燥阶段(20~200℃)、气化裂解阶段(200~500℃)和二次裂解阶段(500~800℃) 3个阶段。废轮胎掺混比例由100%下降至0时,热解初始温度由358.0℃下降至288.5℃,热解终止温度由473.0℃下降至361.6℃。随着升温速率和原料粒度的增加,废轮胎热解反应的最大失重速率增大,热解终温逐渐升高,反应向高温方向移动。采用Coats-Redfern法得到的废轮胎与生物质共热解阶段(250~500℃)活化能为18.61~40.86 k J/mol,生物质掺混比例增加时反应所需要的活化能减小。HSC计算模拟发现:热解过程气体产物主要为H_2、CO、CH_4和CO_2,随着废轮胎掺混比例下降,H_2、CO和CO_2产量增加,CH_4产量减小。通过可燃性气体总量与CO_2产量比值及热解特性分析发现:废轮胎掺混比例控制在40%~60%时获取的可燃性气体产量较高。展开更多
文摘采用热重分析(TG-DTG)对废轮胎和生物质的热解特性进行了分析,研究了原料配比、升温速率及粒度对热解的影响,并采用HSC计算模拟软件对热解气体的分布规律进行了模拟。研究结果表明:废轮胎与生物质共热解过程主要分为干燥阶段(20~200℃)、气化裂解阶段(200~500℃)和二次裂解阶段(500~800℃) 3个阶段。废轮胎掺混比例由100%下降至0时,热解初始温度由358.0℃下降至288.5℃,热解终止温度由473.0℃下降至361.6℃。随着升温速率和原料粒度的增加,废轮胎热解反应的最大失重速率增大,热解终温逐渐升高,反应向高温方向移动。采用Coats-Redfern法得到的废轮胎与生物质共热解阶段(250~500℃)活化能为18.61~40.86 k J/mol,生物质掺混比例增加时反应所需要的活化能减小。HSC计算模拟发现:热解过程气体产物主要为H_2、CO、CH_4和CO_2,随着废轮胎掺混比例下降,H_2、CO和CO_2产量增加,CH_4产量减小。通过可燃性气体总量与CO_2产量比值及热解特性分析发现:废轮胎掺混比例控制在40%~60%时获取的可燃性气体产量较高。