In this paper, we investigate the pseudo almost periodicity of the unique bounded solution for a nonlinear hyperbolic equation with piecewise constant argument. The equation under consideration is a mathematical model...In this paper, we investigate the pseudo almost periodicity of the unique bounded solution for a nonlinear hyperbolic equation with piecewise constant argument. The equation under consideration is a mathematical model for the dynamics of gas absorption,展开更多
We derive a Hamiltonian formulation for two-dimensional nonlinear long waves between two bodies of immiscible fluid with a periodic bottom. From the formulation and using the Hamiltonian perturbation theory, we obtain...We derive a Hamiltonian formulation for two-dimensional nonlinear long waves between two bodies of immiscible fluid with a periodic bottom. From the formulation and using the Hamiltonian perturbation theory, we obtain effective Boussinesq equations that describe the motion of bidirectional long waves and unidirectional equations that are similar to the KdV equation for the case in which the bottom possesses short length scale. The computations for these results are performed in the framework of an asymptotic analysis of multiple scale operators.展开更多
基金The NSF(001084)of Liaoning Provincethe Science Foundation of OUC and the NSF(10371010)of China
文摘In this paper, we investigate the pseudo almost periodicity of the unique bounded solution for a nonlinear hyperbolic equation with piecewise constant argument. The equation under consideration is a mathematical model for the dynamics of gas absorption,
文摘We derive a Hamiltonian formulation for two-dimensional nonlinear long waves between two bodies of immiscible fluid with a periodic bottom. From the formulation and using the Hamiltonian perturbation theory, we obtain effective Boussinesq equations that describe the motion of bidirectional long waves and unidirectional equations that are similar to the KdV equation for the case in which the bottom possesses short length scale. The computations for these results are performed in the framework of an asymptotic analysis of multiple scale operators.