期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于KNN算法的不良步态分类
1
作者
朴泓德
金山海
《信息技术与信息化》
2022年第1期190-193,共4页
针对不良的步态会对下肢的关节产生不利的影响(加重行走的负担,能量消耗过快等),以及加重患病的风险,提出了利用KNN(k-nearest neighbor)算法对足外8和足内8两种不良步态与正常步态(对照组)进行分类学习,获取分类模型。三种步态的三维...
针对不良的步态会对下肢的关节产生不利的影响(加重行走的负担,能量消耗过快等),以及加重患病的风险,提出了利用KNN(k-nearest neighbor)算法对足外8和足内8两种不良步态与正常步态(对照组)进行分类学习,获取分类模型。三种步态的三维步态数据是从17名受试者在正常行走期间通过3D运动捕捉系统获得的,KNN模型对三种步态识别的总正确率为81.7%,对足外8步态的正确率为92.8%以及足内8的正确率为91.0%。模型的正确率较为准确,可以为矫正不良步态提供有力支持、减少不良步态的检测成本。
展开更多
关键词
不良步态
KNN算法
3D运动捕捉系统
下载PDF
职称材料
题名
基于KNN算法的不良步态分类
1
作者
朴泓德
金山海
机构
延边大学工学院
出处
《信息技术与信息化》
2022年第1期190-193,共4页
基金
吉林省自然科学基金(20210101471JC)
吉林省产业技术研究与开发专项(2019C04-2)资助。
文摘
针对不良的步态会对下肢的关节产生不利的影响(加重行走的负担,能量消耗过快等),以及加重患病的风险,提出了利用KNN(k-nearest neighbor)算法对足外8和足内8两种不良步态与正常步态(对照组)进行分类学习,获取分类模型。三种步态的三维步态数据是从17名受试者在正常行走期间通过3D运动捕捉系统获得的,KNN模型对三种步态识别的总正确率为81.7%,对足外8步态的正确率为92.8%以及足内8的正确率为91.0%。模型的正确率较为准确,可以为矫正不良步态提供有力支持、减少不良步态的检测成本。
关键词
不良步态
KNN算法
3D运动捕捉系统
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于KNN算法的不良步态分类
朴泓德
金山海
《信息技术与信息化》
2022
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部