期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
带有协方差矩阵的卷积神经网络在人体运动识别中的应用 被引量:1
1
作者 权威铭 刘天一 张雷 《计算机工程与科学》 CSCD 北大核心 2022年第11期2027-2036,共10页
目前,深度学习已经在各种人体运动识别(HAR)任务中发挥了重要作用。但是,由于运动数据具有时间序列和包含肢体动作的特殊性,现有神经网络在进行卷积操作时会导致数据高度相关,并且随着网络影响到下一层,这限制了模型的识别效果。为此,... 目前,深度学习已经在各种人体运动识别(HAR)任务中发挥了重要作用。但是,由于运动数据具有时间序列和包含肢体动作的特殊性,现有神经网络在进行卷积操作时会导致数据高度相关,并且随着网络影响到下一层,这限制了模型的识别效果。为此,提出了一种带有协方差矩阵的改进卷积神经网络用于HAR场景,通过矩阵变换搭建一种去相关的网络结构来消除相关性问题,可以在网络表现不佳时替代现有的批量归一化(BN)层用于归一化数据。在4个HAR公共数据集上进行实验,并与传统CNN和带有BN层的模型进行比较。实验结果表明,对比此前的深度学习网络,改进的神经网络有1%~2%的性能提升,验证了该方法的有效性,并将程序移植到了移动端进行实时运动识别。 展开更多
关键词 可穿戴传感器 运动识别 卷积神经网络 协方差矩阵
下载PDF
基于渐进式神经网络架构搜索的人体运动识别 被引量:1
2
作者 王震宇 张雷 +1 位作者 高文彬 权威铭 《计算机应用》 CSCD 北大核心 2022年第7期2058-2064,共7页
为了解决基于传感器数据的运动识别问题,利用深度卷积神经网络(CNN)在公开的OPPORTUNITY传感器数据集上进行运动识别,提出了一种改进的渐进式神经网络架构搜索(PNAS)算法。首先,神经网络模型设计过程中不再依赖于合适拓扑结构的手动选择... 为了解决基于传感器数据的运动识别问题,利用深度卷积神经网络(CNN)在公开的OPPORTUNITY传感器数据集上进行运动识别,提出了一种改进的渐进式神经网络架构搜索(PNAS)算法。首先,神经网络模型设计过程中不再依赖于合适拓扑结构的手动选择,而是通过PNAS算法来设计最优拓扑结构以最大化F1分数;其次,使用基于序列模型的优化(SMBO)策略,在该策略中将按照复杂度从低到高的顺序搜索结构空间,同时学习一个代理函数以引导对结构空间的搜索;最后,将搜索过程中表现最好的20个模型在OPPORTUNIT数据集上进行完全训练,并从中选出表现最好的模型作为搜索到的最优架构。通过这种方式搜索到的最优架构在OPPORTUNITY数据集上的F1分数达到了93.08%,与进化算法搜索到的最优架构及DeepConvLSTM相比分别提升了1.34%和1.73%,证明该方法能够改进以前手工设计的模型结构,且是可行有效的。 展开更多
关键词 人体运动识别 深度学习 神经网络架构搜索 卷积神经网络 基于序列模型的优化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部