期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于弱监督学习的细节三维人脸重建 被引量:2
1
作者 申冲 刘川 +4 位作者 张满囤 权子洋 师子奇 史京珊 郭竹砚 《燕山大学学报》 CAS 北大核心 2023年第2期144-151,163,共9页
人脸细节特征(如皱纹、沟壑等)在表达情感信息和提高模型真实感上起着重要作用,然而目前大多数细节重建算法忽略了人脸细节的复杂特性,以单一方法提取细节,无法兼顾细节重建质量和鲁棒性。为此,本文提出了一个基于弱监督学习的重建算法... 人脸细节特征(如皱纹、沟壑等)在表达情感信息和提高模型真实感上起着重要作用,然而目前大多数细节重建算法忽略了人脸细节的复杂特性,以单一方法提取细节,无法兼顾细节重建质量和鲁棒性。为此,本文提出了一个基于弱监督学习的重建算法,使用基于三维人脸形变模型的粗略模型和UV空间的位移贴图来表示细节人脸。为提升网络的细节提取能力,在细节生成部分将人脸细节分为表情相关细节和表情无关细节,并根据两种细节的不同特性分别设计细节生成网络。为进一步提升重建细节的质量,设计了一组针对细节重建的多层级损失函数。最后在大量无标签的二维图像中以弱监督方式学习,实现基于单张图像的细节三维人脸重建。大量实验结果表明,本文算法在鲁棒性和细节重建质量上均有较好的表现。 展开更多
关键词 三维人脸重建 深度学习 弱监督学习 细节生成 三维形变模型
下载PDF
基于多视图和注意力推荐网络的三维物体识别方法
2
作者 张满囤 权子洋 +4 位作者 师子奇 刘川 申冲 吴清 田琪 《郑州大学学报(理学版)》 CAS 北大核心 2023年第1期57-63,共7页
传统物体识别方法是从单一图像中通过人工提取图像特征,存在成本高、质量低等问题。针对上述问题,提出一种基于多视图和注意力推荐网络的三维物体识别方法,多视图很好地保留了物体在局部和全局上的特征;注意力模块可以有效地对视图上关... 传统物体识别方法是从单一图像中通过人工提取图像特征,存在成本高、质量低等问题。针对上述问题,提出一种基于多视图和注意力推荐网络的三维物体识别方法,多视图很好地保留了物体在局部和全局上的特征;注意力模块可以有效地对视图上关键的特征聚焦,忽略无关或干扰特征。该方法利用一组多视图作为输入数据,通过卷积神经网络端到端提取物体特征,在卷积层加入注意力模块,实现视图关键区域的定位和剪裁,将处理后的视图送入另外一个卷积层,两个相同卷积操作提取的特征在池化层聚合,利用稀疏表示分类器对特征描述子进行分类识别。通过两个公开数据集的实验表明,所提算法对物体图像的识别准确度优于传统算法。 展开更多
关键词 三维物体识别 多视图 注意力模块 卷积神经网络 稀疏表示分类器
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部