期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv7的无人机航拍视频西瓜计数方法
1
作者 殷慧军 王宝丽 +4 位作者 景运革 李菊霞 王鹏岭 权高翔 孙婷婷 《农业工程学报》 EI CAS CSCD 北大核心 2024年第19期124-134,共11页
为解决自然环境下西瓜分布不均且遮挡严重导致的人工计数困难问题,该研究提出一种YOLOv7-GCSF模型与Deep SORT算法相融合的无人机视频西瓜自动计数方法。采用Ghost Conv及C2f模块轻量化YOLOv7模型,以减少模型冗余信息;引入Sim AM注意力... 为解决自然环境下西瓜分布不均且遮挡严重导致的人工计数困难问题,该研究提出一种YOLOv7-GCSF模型与Deep SORT算法相融合的无人机视频西瓜自动计数方法。采用Ghost Conv及C2f模块轻量化YOLOv7模型,以减少模型冗余信息;引入Sim AM注意力机制,构建MP-Sim AM模块,用于提高模型特征提取能力;替换CIo U为Focal EIo U损失函数,以增加模型收敛性能;在Deep SORT中提出一种掩模撞线机制,用于提高计数精度。结果表明,YOLOv7-GCSF目标检测模型精确率(P)、均值平均精度(m AP_(0.5))分别达到94.2%、98.2%,相比YOLOv7模型分别提高2.3、0.3个百分点,在模型轻量化方面,较YOLOv7模型浮点运算数下降77.5G,模型参数量、模型大小分别下降0.57M和18.88MB;与传统Tracktor和SORT算法相比,改进的Deep SORT算法跟踪准确率分别提高5.0和13.7个百分点;三白瓜及宁夏硒砂瓜计数结果决定系数为0.93、平均计数精度为96.3%、平均绝对误差为0.77。该方法可有效统计西瓜园西瓜数量,为西瓜产量预测提供一种行之有效的技术途径。 展开更多
关键词 无人机 西瓜 YOLOv7 DeepSORT 目标追踪计数 产量预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部