期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
粗糙K-Modes聚类算法 被引量:5
1
作者 李仁侃 叶东毅 《计算机应用》 CSCD 北大核心 2011年第1期97-100,共4页
Michael K.Ng等人提出了新K-Modes聚类算法,它采用基于相对频率的启发式相异度度量方法,有效地提高了聚类精度,但不足的是在计算各类的属性分类值频率时假定类中样本对聚类的贡献相同。为了考虑类中样本对类中心的不同影响,提出一种粗糙... Michael K.Ng等人提出了新K-Modes聚类算法,它采用基于相对频率的启发式相异度度量方法,有效地提高了聚类精度,但不足的是在计算各类的属性分类值频率时假定类中样本对聚类的贡献相同。为了考虑类中样本对类中心的不同影响,提出一种粗糙K-Modes算法,通过粗糙集的上、下近似度量数据样本在类内的重要性程度,不仅可以获得比新K-Modes算法更好的聚类效果,而且可以在保证聚类效果的基础上降低白亮等人提出的基于粗糙集改进的K-Modes算法的计算复杂度。对几个UCI的数据集的测试实验结果显示出新算法的优良性能。 展开更多
关键词 聚类 K—Modes算法 粗糙集 类中心 聚类精度
下载PDF
属性赋权的K-Modes算法优化 被引量:3
2
作者 李仁侃 叶东毅 《计算机科学与探索》 CSCD 2012年第1期90-96,共7页
传统K-Modes算法的一个主要问题是属性选择问题。K-Modes算法在聚类过程中对每一个属性都同等看待,而在实际应用中,很多数据集仅有几个重要属性对聚类起作用。为了考虑不同属性对聚类的不同影响,将K-Modes聚类算法与属性权重的最优化结... 传统K-Modes算法的一个主要问题是属性选择问题。K-Modes算法在聚类过程中对每一个属性都同等看待,而在实际应用中,很多数据集仅有几个重要属性对聚类起作用。为了考虑不同属性对聚类的不同影响,将K-Modes聚类算法与属性权重的最优化结合起来,提出一种属性自动赋权的FW-K-Modes算法。该算法不仅可以提高传统K-Modes聚类算法的聚类精度,还能分析各维属性对聚类的贡献程度,实现关键属性的选择。对多个UCI数据集进行了实验,验证了该算法的优良特性。 展开更多
关键词 K-Modes聚类 属性选择 自动属性赋权
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部