针对目前主流SLAM(同时定位与建图)算法在动态环境中存在精度大幅下降的问题,提出了一种基于光流分割去除动态物体干扰的DY-SLAM(SLAM In Dynamic Environment)算法。该算法采用实例分割算法结合相邻帧图像之间的稠密光流对动态物体进...针对目前主流SLAM(同时定位与建图)算法在动态环境中存在精度大幅下降的问题,提出了一种基于光流分割去除动态物体干扰的DY-SLAM(SLAM In Dynamic Environment)算法。该算法采用实例分割算法结合相邻帧图像之间的稠密光流对动态物体进行分割,在SLAM系统图像帧间匹配前剔除动态物体特征点,提高动态环境下的定位精度。使用公开数据集对算法进行评估,算法的RMSE提升最大可达21.59%,能够有效提高系统在复杂动态环境下的定位精度及鲁棒性。展开更多
基金Supported by the National Natural Science Foundation of China(Nos.81160207and 81260257)the National Undergraduate Training Programs for Innovation and Entrepreneurship(No.201310403026)~~
文摘针对目前主流SLAM(同时定位与建图)算法在动态环境中存在精度大幅下降的问题,提出了一种基于光流分割去除动态物体干扰的DY-SLAM(SLAM In Dynamic Environment)算法。该算法采用实例分割算法结合相邻帧图像之间的稠密光流对动态物体进行分割,在SLAM系统图像帧间匹配前剔除动态物体特征点,提高动态环境下的定位精度。使用公开数据集对算法进行评估,算法的RMSE提升最大可达21.59%,能够有效提高系统在复杂动态环境下的定位精度及鲁棒性。