期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于语义理解注意力神经网络的多元特征融合中文文本分类 被引量:29
1
作者 谢金宝 侯永进 +2 位作者 康守强 李佰蔚 张霄 《电子与信息学报》 EI CSCD 北大核心 2018年第5期1258-1265,共8页
在中文文本分类任务中,针对重要特征在中文文本中位置分布分散、稀疏的问题,以及不同文本特征对文本类别识别贡献不同的问题,该文提出一种基于语义理解的注意力神经网络、长短期记忆网络(LSTM)与卷积神经网络(CNN)的多元特征融合中文文... 在中文文本分类任务中,针对重要特征在中文文本中位置分布分散、稀疏的问题,以及不同文本特征对文本类别识别贡献不同的问题,该文提出一种基于语义理解的注意力神经网络、长短期记忆网络(LSTM)与卷积神经网络(CNN)的多元特征融合中文文本分类模型(3CLA)。模型首先通过文本预处理将中文文本分词、向量化。然后,通过嵌入层分别经过CNN通路、LSTM通路和注意力算法模型通路以提取不同层次、具有不同特点的文本特征。最终,文本特征经融合层融合后,由softmax分类器进行分类。基于中文语料进行了文本分类实验。实验结果表明,相较于CNN结构模型与LSTM结构模型,提出的算法模型对中文文本类别的识别能力最多提升约8%。 展开更多
关键词 中文文本分类 多元特征融合 注意力算法 长短期记忆网络 卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部