Presented is a multiple model soft sensing method based on Affinity Propagation (AP), Gaussian process (GP) and Bayesian committee machine (BCM). AP clustering arithmetic is used to cluster training samples acco...Presented is a multiple model soft sensing method based on Affinity Propagation (AP), Gaussian process (GP) and Bayesian committee machine (BCM). AP clustering arithmetic is used to cluster training samples according to their operating points. Then, the sub-models are estimated by Gaussian Process Regression (GPR). Finally, in order to get a global probabilistic prediction, Bayesian committee mactnne is used to combine the outputs of the sub-estimators. The proposed method has been applied to predict the light naphtha end point in hydrocracker fractionators. Practical applications indicate that it is useful for the online prediction of quality monitoring in chemical processes.展开更多
基金Supported by the National High Technology Research and Development Program of China (2006AA040309)National BasicResearch Program of China (2007CB714000)
文摘Presented is a multiple model soft sensing method based on Affinity Propagation (AP), Gaussian process (GP) and Bayesian committee machine (BCM). AP clustering arithmetic is used to cluster training samples according to their operating points. Then, the sub-models are estimated by Gaussian Process Regression (GPR). Finally, in order to get a global probabilistic prediction, Bayesian committee mactnne is used to combine the outputs of the sub-estimators. The proposed method has been applied to predict the light naphtha end point in hydrocracker fractionators. Practical applications indicate that it is useful for the online prediction of quality monitoring in chemical processes.