Control of ion transport and fluid flow through nanofluidic devices is of primary importance for energy storage and conversion, drug delivery and a wide range of biological processes. Recent development of nanotechnol...Control of ion transport and fluid flow through nanofluidic devices is of primary importance for energy storage and conversion, drug delivery and a wide range of biological processes. Recent development of nanotechnology, synthesis techniques, purification technologies, and experiment have led to rapid advances in simulation and modeling studies on ion transport properties. In this review, the applications of Poisson-Nernst-Plank (PNP) equations in analyzing transport properties are presented. The molecular dynamics (MD) studies of transport properties of ion and fluidic flow through nanofluidic devices are reported as well.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374243 and 11574256)
文摘Control of ion transport and fluid flow through nanofluidic devices is of primary importance for energy storage and conversion, drug delivery and a wide range of biological processes. Recent development of nanotechnology, synthesis techniques, purification technologies, and experiment have led to rapid advances in simulation and modeling studies on ion transport properties. In this review, the applications of Poisson-Nernst-Plank (PNP) equations in analyzing transport properties are presented. The molecular dynamics (MD) studies of transport properties of ion and fluidic flow through nanofluidic devices are reported as well.