针对早期火灾信息特点,提出了一种基于二叉树的最小二乘小波支持向量机(Least squareswavelet support vector machine,LS-WSVM)多类分类方法.该方法首先把主成份分析用于早期火灾信息的特征提取.然后,把二叉树结构和LS-WSVM相结合,提...针对早期火灾信息特点,提出了一种基于二叉树的最小二乘小波支持向量机(Least squareswavelet support vector machine,LS-WSVM)多类分类方法.该方法首先把主成份分析用于早期火灾信息的特征提取.然后,把二叉树结构和LS-WSVM相结合,提出了基于二叉树的LS-WSVM多类分类模型,不仅避免了盲目分类和不可分情况,而且提高了分类速度和泛化能力.最后,用该模型对特征信息进行处理,从而实现了对早期火灾的多类识别.早期火灾分类实验结果表明,该方法比采用径向基核函数的最小二乘支持向量机多类分类方法具有更好的识别效果和更快的分类速度.展开更多
文摘针对早期火灾信息特点,提出了一种基于二叉树的最小二乘小波支持向量机(Least squareswavelet support vector machine,LS-WSVM)多类分类方法.该方法首先把主成份分析用于早期火灾信息的特征提取.然后,把二叉树结构和LS-WSVM相结合,提出了基于二叉树的LS-WSVM多类分类模型,不仅避免了盲目分类和不可分情况,而且提高了分类速度和泛化能力.最后,用该模型对特征信息进行处理,从而实现了对早期火灾的多类识别.早期火灾分类实验结果表明,该方法比采用径向基核函数的最小二乘支持向量机多类分类方法具有更好的识别效果和更快的分类速度.