期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进YOLOv5的智能除草机器人蔬菜苗田杂草检测研究
被引量:
8
1
作者
张伟康
孙浩
+3 位作者
陈鑫凯
李叙兵
姚立纲
东辉
《图学学报》
CSCD
北大核心
2023年第2期346-356,共11页
杂草精准检测是自动化除草装备的关键技术。针对田间杂草分布复杂和种类繁多导致的检测复杂度高和鲁棒性差等问题,基于自研移动机器人平台,提出一种改进YOLOv5算法和图像处理的蔬菜苗田杂草检测方法。通过识别蔬菜间接检测杂草的方式降...
杂草精准检测是自动化除草装备的关键技术。针对田间杂草分布复杂和种类繁多导致的检测复杂度高和鲁棒性差等问题,基于自研移动机器人平台,提出一种改进YOLOv5算法和图像处理的蔬菜苗田杂草检测方法。通过识别蔬菜间接检测杂草的方式降低杂草检测复杂度,进而提高检测精度和鲁棒性。在YOLOv5目标检测算法主干特征提取网络中引入卷积块注意力模块(CBAM)提高网络对蔬菜目标的关注度,加入Transformer模块增强模型对全局信息的捕捉能力。结果表明,改进YOLOv5算法对蔬菜目标的平均检测准确率可达95.7%,与Faster R-CNN,SSD,EfficientDet,RetinaNet,YOLOv3,YOLOv4和YOLOv5算法相比,分别提高了5.8%,6.9%,10.3%,13.1%,9.0%,5.2%和3.2%。算法单幅图像平均检测时间11 ms,具有较好的实时性。采用改进YOLOv5算法检测蔬菜,将蔬菜边框之外绿色植物定义为杂草,超绿特征(ExG)结合OTSU阈值分割法将杂草与土壤背景分割,最后标记杂草连通域输出杂草质心和检测框。本研究方法可为农业自动化精准除草提供借鉴。
展开更多
关键词
除草机器人
杂草检测
蔬菜识别
YOLOv5
注意力机制
下载PDF
职称材料
题名
基于改进YOLOv5的智能除草机器人蔬菜苗田杂草检测研究
被引量:
8
1
作者
张伟康
孙浩
陈鑫凯
李叙兵
姚立纲
东辉
机构
福州大学机械工程及自动化学院
出处
《图学学报》
CSCD
北大核心
2023年第2期346-356,共11页
基金
国家自然科学基金项目(62173093)
福建省自然科学基金项目(2020J01456)。
文摘
杂草精准检测是自动化除草装备的关键技术。针对田间杂草分布复杂和种类繁多导致的检测复杂度高和鲁棒性差等问题,基于自研移动机器人平台,提出一种改进YOLOv5算法和图像处理的蔬菜苗田杂草检测方法。通过识别蔬菜间接检测杂草的方式降低杂草检测复杂度,进而提高检测精度和鲁棒性。在YOLOv5目标检测算法主干特征提取网络中引入卷积块注意力模块(CBAM)提高网络对蔬菜目标的关注度,加入Transformer模块增强模型对全局信息的捕捉能力。结果表明,改进YOLOv5算法对蔬菜目标的平均检测准确率可达95.7%,与Faster R-CNN,SSD,EfficientDet,RetinaNet,YOLOv3,YOLOv4和YOLOv5算法相比,分别提高了5.8%,6.9%,10.3%,13.1%,9.0%,5.2%和3.2%。算法单幅图像平均检测时间11 ms,具有较好的实时性。采用改进YOLOv5算法检测蔬菜,将蔬菜边框之外绿色植物定义为杂草,超绿特征(ExG)结合OTSU阈值分割法将杂草与土壤背景分割,最后标记杂草连通域输出杂草质心和检测框。本研究方法可为农业自动化精准除草提供借鉴。
关键词
除草机器人
杂草检测
蔬菜识别
YOLOv5
注意力机制
Keywords
weeding robot
weed detection
vegetable identification
YOLOv5
attention mechanism
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进YOLOv5的智能除草机器人蔬菜苗田杂草检测研究
张伟康
孙浩
陈鑫凯
李叙兵
姚立纲
东辉
《图学学报》
CSCD
北大核心
2023
8
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部