期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度学习的企业多源数据融合并行处理方法设计
1
作者 辛保江 徐亭亭 +1 位作者 李德文 李宸冠 《网络安全技术与应用》 2023年第9期48-49,共2页
为解决数据融合处理中的丢失问题,本文进行基于深度学习的企业多源数据融合并行处理方法设计研究。将获取的信息按照其来源与类型划分为多个类别,在计算机终端建立一个空白云存储终端,将所有数据录入云存储空间,使采集的数据在空间中呈... 为解决数据融合处理中的丢失问题,本文进行基于深度学习的企业多源数据融合并行处理方法设计研究。将获取的信息按照其来源与类型划分为多个类别,在计算机终端建立一个空白云存储终端,将所有数据录入云存储空间,使采集的数据在空间中呈现离散化分布状态,计算不同网格区域之间的相似性,按照规范完成对企业多源数据的预处理;引进深度学习算法,将数据录入卷积层,建立数据在深度学习网络中的反向传播训练损失函数,通过不断更新卷积层节点参数的方式,提取多源数据特征,在深度学习网络Sink节点,根据待处理数据的类型,在节点驱动数据的融合并行处理。设计对比实验证明:设计的处理方法在实际应用中的效果最佳,该方法可以有效控制企业多源数据融合并行处理过程中的丢失量,降低企业损失。 展开更多
关键词 深度学习 处理方法 并行 融合 多源数据 企业
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部