期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于彩色图像高频信息引导的深度图超分辨率重建算法研究
1
作者 李嘉莹 梁宇栋 +2 位作者 李少吉 张昆鹏 张超 《计算机科学》 CSCD 北大核心 2024年第7期197-205,共9页
深度图像信息是三维场景信息的重要组成部分,然而,由于采集设备的局限性和成像环境的多样性,深度传感器获取的深度图像往往分辨率较低、高频信息较少,限制了其在各种计算机视觉任务中的进一步应用。深度图超分辨率试图提高深度图的分辨... 深度图像信息是三维场景信息的重要组成部分,然而,由于采集设备的局限性和成像环境的多样性,深度传感器获取的深度图像往往分辨率较低、高频信息较少,限制了其在各种计算机视觉任务中的进一步应用。深度图超分辨率试图提高深度图的分辨率,是一项实用而有价值的任务。同一场景下的RGB图像分辨率高,纹理信息丰富,部分深度图超分辨率算法通过引入来自同一场景下的RGB图像提供指导信息,实现了算法性能的显著提升。然而,由于RGB图像和深度图之间的模态不一致,如何充分、有效地利用RGB信息辅助深度图像进行图像超分辨率重建仍然极具挑战。为此,提出了一种基于彩色图像高频信息引导的深度图超分辨率重建算法。具体地,设计了一个高频特征提取模块来自适应地学习彩色图像中的高频信息,以指导深度图边缘的重建。另外,设计了一个特征自注意力模块来获取特征之间的全局依赖,同时提取更深层次的特征,以帮助深度图细节信息的恢复。经过跨模态融合,重组深度图像特征和彩色图像引导特征,并使用多尺度特征融合模块融合不同尺度特征之间的空间结构信息,获取包含多级感受野的重建信息。最后,通过深度重建模块,恢复相应的高分辨率深度图。公开数据集上的实验结果表明所提方法在定量和定性两方面均优于对比方法,验证了所提方法的有效性。 展开更多
关键词 深度图超分重建 深度学习 跨模态特征融合 高频信息 自注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部