期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv7的密集鱼群计数检测
1
作者 李尹佳 胡泽元 +4 位作者 涂万 张鹏 韦思学 于红 吴俊峰 《广东海洋大学学报》 CAS CSCD 北大核心 2024年第2期115-123,共9页
【目的】提高在水体浑浊和鱼群高密度聚集等复杂环境中的鱼群检测精度。【方法】提出一种基于双层路由注意力机制(BiFormer)和Normalized Wasserstein Distance(NWD)损失函数的改进YOLOv7的密集鱼群计数检测方法。在保留细粒度特征的基... 【目的】提高在水体浑浊和鱼群高密度聚集等复杂环境中的鱼群检测精度。【方法】提出一种基于双层路由注意力机制(BiFormer)和Normalized Wasserstein Distance(NWD)损失函数的改进YOLOv7的密集鱼群计数检测方法。在保留细粒度特征的基础上,提高模型对多尺度特征的学习能力,同时降低模型对模糊图像中小目标位置偏差的敏感性,加强对浑浊水域中鱼群的识别能力。为评估该模型的有效性,在红鳍东方鲀(Takifugu rubripes)数据集上与其他网络模型进行对比实验。【结果】该方法在红鳍东方鲀数据集上的准确率和召回率分别达到98.05%和97.69%,平均精度达到99.10%,较YOLOv7相比分别提升2.46%、3.73%和2.62%。与目前检测准确率较高的其他水下目标检测模型相比,平均精度平均提高4.25%。【结论】实现真实养殖环境下浑浊水域中鱼群的准确检测,有助于科学指导工业化水产养殖的生产管理,提高养殖效率,减少资源浪费。 展开更多
关键词 水产养殖 鱼类检测 深度学习 YOLOv7 BiFormer NWD
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部