期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
土壤有机质高光谱特征与波长变量优选方法 被引量:25
1
作者 朱亚星 于雷 +5 位作者 洪永胜 章涛 朱强 李思缔 郭力 刘家胜 《中国农业科学》 CAS CSCD 北大核心 2017年第22期4325-4337,共13页
【目的】探究土壤有机质的高光谱特征及响应规律,优选土壤有机质的敏感波长,降低土壤有机质高光谱估测模型复杂度,提高模型稳健性,为利用高光谱技术对农田土壤肥力的定量监测提供理论支撑。【方法】采集江汉平原潮土土样130个,将其中40... 【目的】探究土壤有机质的高光谱特征及响应规律,优选土壤有机质的敏感波长,降低土壤有机质高光谱估测模型复杂度,提高模型稳健性,为利用高光谱技术对农田土壤肥力的定量监测提供理论支撑。【方法】采集江汉平原潮土土样130个,将其中40个样本作为训练集,测量其去有机质前、后的土壤有机质含量及光谱数据,计算差值及变化率,分析土壤有机质含量变化对光谱特征的影响,结合无信息变量消除(uninformative variables elimination,UVE)、竞争适应重加权采样(competitive adaptive reweighted sampling,CARS)变量优选方法确定土壤有机质敏感波长;采用45个建模集样本,基于偏最小二乘回归(partial Least Squares Regression,PLSR)和反向传播神经网络(back propagation neural network,BPNN)建立土壤有机质含量的估算模型;利用45个验证集样本检验敏感波长对同类土壤的适用性。【结果】通过有机质去除试验,供试土壤的平均光谱反射率在全波段均有所增加,在可见光波段变化率高于近红外波段;比较UVE、CARS、UVE-CARS、CARS-UVE这4种变量优选方法,得到最佳变量优选方法为UVE-CARS,该方法从2001个波长变量中优选得到84个变量作为土壤有机质的敏感波长,分布于561—721、1 920—2 280 nm波段覆盖范围;基于敏感波长的PLSR、BPNN模型性能均优于全波段模型,其中,基于敏感波长的BPNN模型的估测能力高于PLSR,模型验证集R^2、RMSE、RPD、MAE、MRE值分别为0.74、1.33 g·kg^(-1)、2.02、1.04 g·kg^(-1)、6.2%,可实现土壤有机质含量的有效估测。【结论】通过训练集获得的土壤有机质敏感波长,能够实现对该试验区同种土壤类型样本土壤有机质含量的有效估测;利用去有机质试验结合变量优选方法确定的敏感波长建模,不仅将输入波长压缩至全波段波长数目的 4.2%,而且提升了模型估测精度,降低了变量维度和模型复杂度,为快速准确评估农田土壤有机质含量提供了新途径。 展开更多
关键词 土壤有机质 高光谱 变量优选 偏最小二乘回归 反向传播神经网络 潮土
下载PDF
利用OSC算法消除土壤含水量变化对Vis-NIR光谱估算有机质的影响 被引量:6
2
作者 洪永胜 于雷 +5 位作者 朱亚星 李思缔 郭力 刘家胜 聂艳 周勇 《中国农业科学》 CAS CSCD 北大核心 2017年第19期3766-3777,共12页
【目的】快速、准确地监测土壤有机质对于精准农业的发展具有重要意义。可见光-近红外(visible and near-infrared,Vis-NIR)光谱技术在土壤属性估算、数字化土壤制图等方面应用较为广泛,然而,在田间进行光谱测量,易受土壤含水量(soil mo... 【目的】快速、准确地监测土壤有机质对于精准农业的发展具有重要意义。可见光-近红外(visible and near-infrared,Vis-NIR)光谱技术在土壤属性估算、数字化土壤制图等方面应用较为广泛,然而,在田间进行光谱测量,易受土壤含水量(soil moisture,SM)、温度、土壤表面状况等因素的影响,导致光谱信息中包含大量干扰信息,其中,SM变化是影响光谱观测结果最为显著的因素之一。此研究的目的是探讨OSC算法消除其影响,提升Vis-NIR光谱定量估算土壤有机质(soil organic matter,SOM)的精度。【方法】以江汉平原公安县和潜江市为研究区域,采集217份耕层(0—20 cm)土壤样本,进行风干、研磨、过筛等处理,采用重铬酸钾-外加热法测定SOM;将总体样本划分为3个互不重叠的样本集:建模集S^0(122个样本)、训练集S^1(60个样本)、验证集S^2(35个样本);设计SM梯度试验(梯度间隔为4%),在实验室内获取S^1和S^2样本集的9个梯度SM(0%—32%)的土壤光谱数据;分析SM对土壤Vis-NIR光谱反射率的影响,采用外部参数正交化算法(external parameter orthogonalization,EPO)、正交信号校正算法(orthogonal signal correction,OSC)消除SM对土壤光谱的干扰;利用主成分分析(principal component analysis,PCA)的前两个主成分得分和光谱相关系数两种方法检验消除SM干扰前、后的效果;基于偏最小二乘回归(partial least squares regression,PLSR)方法建立EPO和OSC处理前、后的SOM估算模型,利用决定系数(coefficient of determination,R^2)、均方根误差(root mean square error,RMSE)和RPD(the ratio of prediction to deviation)3个指标比较PLSR、EPO-PLSR、OSC-PLSR模型的性能。【结果】土壤Vis-NIR光谱受SM的影响十分明显,随着SM的增加,土壤光谱反射率呈非线性降低趋势。OSC处理前的湿土光谱数据主成分得分散点相对分散,与干土光谱数据主成分得分空间的位置不重叠,不同SM梯度之间的光谱相关系数变化较大;OSC处理后的湿土光谱数据主成分得分空间的位置基本与干土光谱数据相重合,各样本光谱数据之间相似性很高,不同SM梯度之间的光谱相关系数变化较小。9个SM梯度的EPO-PLSR模型的验证平均R^2_(pre)、RPD分别为0.69、1.7。9个SM梯度的OSC-PLSR模型的验证平均R^2_(pre)、RPD分别为0.72、1.89,校正后的OSC-PLSR模型受SM的较小,有效提升SOM估算模型的精度和鲁棒性。【结论】OSC能够消除SM变化对土壤Vis-NIR光谱的影响,可为将来田间原位实时监测SOM信息提供一定的理论支撑。 展开更多
关键词 Vis-NIR光谱 土壤有机质 土壤含水量 正交信号校正 偏最小二乘回归 江汉平原
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部