期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于PCA-PNN的采空区多源指标危险性辨识
被引量:
1
1
作者
曹占华
袁海平
李恒喆
《中国安全生产科学技术》
CAS
CSCD
北大核心
2022年第12期104-109,共6页
为了提高采空区多源指标危险性辨识的预测精度,基于主成分分析(PCA)和概率神经网络(PNN),提出1种采空区多源指标危险性辨识方法。将影响华东某地区矿山采空区危险性辨识的9项因素作为主要影响因素,并以96个实测采空区为例进行分级。研...
为了提高采空区多源指标危险性辨识的预测精度,基于主成分分析(PCA)和概率神经网络(PNN),提出1种采空区多源指标危险性辨识方法。将影响华东某地区矿山采空区危险性辨识的9项因素作为主要影响因素,并以96个实测采空区为例进行分级。研究结果表明:与朴素贝叶斯、随机森林和AdaBoost 3种机器学习算法相比,PNN在测试集上表现更好,对实际工程具有良好的指导意义和应用价值。
展开更多
关键词
采空区
危险性评价
主成分分析
概率神经网络
机器学习
下载PDF
职称材料
题名
基于PCA-PNN的采空区多源指标危险性辨识
被引量:
1
1
作者
曹占华
袁海平
李恒喆
机构
合肥工业大学土木与水利工程学院
出处
《中国安全生产科学技术》
CAS
CSCD
北大核心
2022年第12期104-109,共6页
基金
国家自然科学基金项目(51874112)。
文摘
为了提高采空区多源指标危险性辨识的预测精度,基于主成分分析(PCA)和概率神经网络(PNN),提出1种采空区多源指标危险性辨识方法。将影响华东某地区矿山采空区危险性辨识的9项因素作为主要影响因素,并以96个实测采空区为例进行分级。研究结果表明:与朴素贝叶斯、随机森林和AdaBoost 3种机器学习算法相比,PNN在测试集上表现更好,对实际工程具有良好的指导意义和应用价值。
关键词
采空区
危险性评价
主成分分析
概率神经网络
机器学习
Keywords
goaf
risk assessment
principal component analysis(PCA)
probabilistic neural network(PNN)
machine learning
分类号
X936 [环境科学与工程—安全科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于PCA-PNN的采空区多源指标危险性辨识
曹占华
袁海平
李恒喆
《中国安全生产科学技术》
CAS
CSCD
北大核心
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部