针对雾霾天气下交通信号灯定位准确率较低、图像增强时出现图像亮度不均匀的问题,该文提出一种基于改进的带色彩恢复的多尺度视网膜增强(Multi-Scale Retinex with Color Restoration,MSRCR)的雾霾天气下信号灯识别算法。首先利用改进的...针对雾霾天气下交通信号灯定位准确率较低、图像增强时出现图像亮度不均匀的问题,该文提出一种基于改进的带色彩恢复的多尺度视网膜增强(Multi-Scale Retinex with Color Restoration,MSRCR)的雾霾天气下信号灯识别算法。首先利用改进的MSRCR算法对有雾图像进行预处理,校正图像亮度并丰富图像细节;再利用最大稳定极值区域(Maximally Stable Extremal Regions,MSER)算法以及信号灯的背板信息确定信号灯的位置;最后将定位区域转换至HSV空间进行信号灯识别。结果表明,该方法能够在雾霾条件下有效地定位及识别交通信号灯。展开更多
文摘针对雾霾天气下交通信号灯定位准确率较低、图像增强时出现图像亮度不均匀的问题,该文提出一种基于改进的带色彩恢复的多尺度视网膜增强(Multi-Scale Retinex with Color Restoration,MSRCR)的雾霾天气下信号灯识别算法。首先利用改进的MSRCR算法对有雾图像进行预处理,校正图像亮度并丰富图像细节;再利用最大稳定极值区域(Maximally Stable Extremal Regions,MSER)算法以及信号灯的背板信息确定信号灯的位置;最后将定位区域转换至HSV空间进行信号灯识别。结果表明,该方法能够在雾霾条件下有效地定位及识别交通信号灯。