期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
深度伪造与检测技术综述
被引量:
33
1
作者
李旭嵘
纪守领
+5 位作者
吴春明
刘振广
邓水光
程鹏
杨珉
孔祥维
《软件学报》
EI
CSCD
北大核心
2021年第2期496-518,共23页
深度学习在计算机视觉领域取得了重大成功,超越了众多传统的方法.然而近年来,深度学习技术被滥用在假视频的制作上,使得以Deepfakes为代表的伪造视频在网络上泛滥成灾.这种深度伪造技术通过篡改或替换原始视频的人脸信息,并合成虚假的...
深度学习在计算机视觉领域取得了重大成功,超越了众多传统的方法.然而近年来,深度学习技术被滥用在假视频的制作上,使得以Deepfakes为代表的伪造视频在网络上泛滥成灾.这种深度伪造技术通过篡改或替换原始视频的人脸信息,并合成虚假的语音来制作色情电影、虚假新闻、政治谣言等.为了消除此类伪造技术带来的负面影响,众多学者对假视频的鉴别进行了深入的研究,并提出一系列的检测方法来帮助机构或社区去识别此类伪造视频.尽管如此,目前的检测技术仍然存在依赖特定分布数据、特定压缩率等诸多的局限性,远远落后于假视频的生成技术.并且不同学者解决问题的角度不同,使用的数据集和评价指标均不统一.迄今为止,学术界对深度伪造与检测技术仍缺乏统一的认识,深度伪造和检测技术研究的体系架构尚不明确.回顾了深度伪造与检测技术的发展,并对现有研究工作进行了系统的总结和科学的归类.最后讨论了深度伪造技术蔓延带来的社会风险,分析了检测技术的诸多局限性,并探讨了检测技术面临的挑战和潜在研究方向,旨在为后续学者进一步推动深度伪造检测技术的发展和部署提供指导.
展开更多
关键词
深度学习
深度伪造
假视频
取证
检测技术
下载PDF
职称材料
一种基于双流网络的Deepfakes检测技术
被引量:
9
2
作者
李旭嵘
于鲲
《信息安全学报》
CSCD
2020年第2期84-91,共8页
随着深度学习技术的飞速发展,以Deepfakes为代表的深度伪造技术开始充斥在互联网上的各个角落。Deepfakes借助于生成对抗网络和自动编码器技术,能够轻松替换人脸以及篡改人的表情信息。此类Deepfakes假视频可以制作虚假色情影片、谣言,...
随着深度学习技术的飞速发展,以Deepfakes为代表的深度伪造技术开始充斥在互联网上的各个角落。Deepfakes借助于生成对抗网络和自动编码器技术,能够轻松替换人脸以及篡改人的表情信息。此类Deepfakes假视频可以制作虚假色情影片、谣言,传播假新闻,甚至影响政治选举,带来的社会影响极其恶劣。然而,针对此类伪造视频的检测技术还远远落后于生成技术,已有的工作都存在一定的局限性,并不能较好地对Deepfakes视频进行检测。本文首先对现有生成和检测工作进行综述,并分析了现有工作的缺陷,然后提出了基于EfficientNet的双流网络检测框架。通过在大规模开源数据集FaceForensics++测试,我们的检测技术可以在检测Deepfakes类假视频上平均准确率达到99%以上,并一定程度提高模型对抗压缩的能力。
展开更多
关键词
深度学习
深度伪造
检测
双流网络
下载PDF
职称材料
题名
深度伪造与检测技术综述
被引量:
33
1
作者
李旭嵘
纪守领
吴春明
刘振广
邓水光
程鹏
杨珉
孔祥维
机构
浙江大学计算机科学与技术学院
阿里巴巴
之江实验室
浙江工商大学计算机与信息工程学院
浙江大学控制科学与工程学院
复旦大学计算机科学技术学院
浙江大学管理学院
出处
《软件学报》
EI
CSCD
北大核心
2021年第2期496-518,共23页
基金
国家重点研发计划(2018YFB0804102,2020YFB1804705)
浙江省自然科学基金(LR19F020003)
+2 种基金
浙江省重点研发计划(2019C01055,2020C01021)
国家自然科学基金(61772466,U1936215,U1836202)
前沿科技创新专项(2019QY(Y)0205)。
文摘
深度学习在计算机视觉领域取得了重大成功,超越了众多传统的方法.然而近年来,深度学习技术被滥用在假视频的制作上,使得以Deepfakes为代表的伪造视频在网络上泛滥成灾.这种深度伪造技术通过篡改或替换原始视频的人脸信息,并合成虚假的语音来制作色情电影、虚假新闻、政治谣言等.为了消除此类伪造技术带来的负面影响,众多学者对假视频的鉴别进行了深入的研究,并提出一系列的检测方法来帮助机构或社区去识别此类伪造视频.尽管如此,目前的检测技术仍然存在依赖特定分布数据、特定压缩率等诸多的局限性,远远落后于假视频的生成技术.并且不同学者解决问题的角度不同,使用的数据集和评价指标均不统一.迄今为止,学术界对深度伪造与检测技术仍缺乏统一的认识,深度伪造和检测技术研究的体系架构尚不明确.回顾了深度伪造与检测技术的发展,并对现有研究工作进行了系统的总结和科学的归类.最后讨论了深度伪造技术蔓延带来的社会风险,分析了检测技术的诸多局限性,并探讨了检测技术面临的挑战和潜在研究方向,旨在为后续学者进一步推动深度伪造检测技术的发展和部署提供指导.
关键词
深度学习
深度伪造
假视频
取证
检测技术
Keywords
deep learning
Deepfakes
fake video
forensics
detection technique
分类号
TP309 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
一种基于双流网络的Deepfakes检测技术
被引量:
9
2
作者
李旭嵘
于鲲
机构
阿里巴巴
出处
《信息安全学报》
CSCD
2020年第2期84-91,共8页
基金
阿里实人认证项目资助。
文摘
随着深度学习技术的飞速发展,以Deepfakes为代表的深度伪造技术开始充斥在互联网上的各个角落。Deepfakes借助于生成对抗网络和自动编码器技术,能够轻松替换人脸以及篡改人的表情信息。此类Deepfakes假视频可以制作虚假色情影片、谣言,传播假新闻,甚至影响政治选举,带来的社会影响极其恶劣。然而,针对此类伪造视频的检测技术还远远落后于生成技术,已有的工作都存在一定的局限性,并不能较好地对Deepfakes视频进行检测。本文首先对现有生成和检测工作进行综述,并分析了现有工作的缺陷,然后提出了基于EfficientNet的双流网络检测框架。通过在大规模开源数据集FaceForensics++测试,我们的检测技术可以在检测Deepfakes类假视频上平均准确率达到99%以上,并一定程度提高模型对抗压缩的能力。
关键词
深度学习
深度伪造
检测
双流网络
Keywords
deep learning
deepfakes
detection
two-stream networks
分类号
TP309.2 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
深度伪造与检测技术综述
李旭嵘
纪守领
吴春明
刘振广
邓水光
程鹏
杨珉
孔祥维
《软件学报》
EI
CSCD
北大核心
2021
33
下载PDF
职称材料
2
一种基于双流网络的Deepfakes检测技术
李旭嵘
于鲲
《信息安全学报》
CSCD
2020
9
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部