期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
深度学习在肿瘤组织病理图像分析中的应用 被引量:4
1
作者 徐贵璇 王阳 +3 位作者 张杨杨 李春(综述) 刘春霞 李锋(审校) 《临床与病理杂志》 CAS 2021年第6期1454-1462,共9页
全载玻片数字扫描技术自1999年首次提出以来,在许多病理领域得到应用和验证。近年来,将先进的人工智能(artificial intelligence,AI)技术应用于医学诊断领域,不仅为改善医疗保健提供了新思路,也掀起了在肿瘤病理学领域研究的新浪潮。在... 全载玻片数字扫描技术自1999年首次提出以来,在许多病理领域得到应用和验证。近年来,将先进的人工智能(artificial intelligence,AI)技术应用于医学诊断领域,不仅为改善医疗保健提供了新思路,也掀起了在肿瘤病理学领域研究的新浪潮。在大数据及数字显微技术背景下,深度学习(deeplearning,DL)作为实现AI的一种新兴手段,在肿瘤检测、分类、转移和预后预测等组织病理图像分析中显示出巨大潜力。传统病理诊断结果受病理医师个人知识储备、临床经验以及逻辑思维方式的影响,主观性强且重复率低。AI作为一种新技术,在辅助病理医师进行病理诊断时,可以在一定程度上规避上述人为因素,减少人工失误,提高病理诊断的准确率和重复率,支持实时诊断决策。这不仅能够缓解医疗卫生资源的压力,而且能够为精准医疗助力。本文就DL在肺癌、乳腺癌、前列腺癌组织病理图像分析中的应用现状、机遇及挑战作一综述,并从病理医师角度讨论模型开发和应用监管中存在的问题。 展开更多
关键词 深度学习 组织病理图像 肺癌 乳腺癌 前列腺癌
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部