期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于C-lightGBM的用户窃电检测 被引量:11
1
作者 刘海青 李智桥 李元诚 《计算机应用研究》 CSCD 北大核心 2020年第S01期298-300,303,共4页
近年来窃电事件频发,及时准确地检测用户窃电行为对国家电网的安全与效益至关重要,目前对于海量有缺陷用户电力数据还缺少行之有效的检测方法。针对以上问题,提出了一种新的窃电检测模型C-lightGBM。该模型通过卷积神经网络(convolution... 近年来窃电事件频发,及时准确地检测用户窃电行为对国家电网的安全与效益至关重要,目前对于海量有缺陷用户电力数据还缺少行之有效的检测方法。针对以上问题,提出了一种新的窃电检测模型C-lightGBM。该模型通过卷积神经网络(convolutional neural network,CNN)从用电数据提取用户电力特征,将提取的特征输入到轻量级提升决策树(light GBM)分类器,进行用户用电行为分类检测,兼备了CNN的深度特征提取性能以及light GBM快速准确的分类能力,从而达到预期的窃电检测效果。最后通过Jupyter Lab平台进行实验,分别对比不同特征提取方法对窃电检测的效果,并验证CNN特征提取的能力。此外,比较不同分类器在窃电检测中的AUC(area under curve)值与MAP(mean average precision),C-lightGBM窃电检测模型的检测精度值提升了5%,AUC值提升了5.8%。 展开更多
关键词 提升决策树 窃电检测 轻量级提升决策树 特征提取 卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部