抗生素自问世以来,为疟疾、结核等传染性疾病的治疗做出了突出贡献,但是随着抗生素的滥用,耐药性细菌不断增多与细菌致病能力日益增强,导致有效的抗生素资源日益枯竭。因此,人类迫切需要寻找到抗菌新药或者抗生素的增效剂。大电导的机...抗生素自问世以来,为疟疾、结核等传染性疾病的治疗做出了突出贡献,但是随着抗生素的滥用,耐药性细菌不断增多与细菌致病能力日益增强,导致有效的抗生素资源日益枯竭。因此,人类迫切需要寻找到抗菌新药或者抗生素的增效剂。大电导的机械敏感通道(mechanosensitive channel of large conductance,MscL)是一类位于细菌细胞膜上的通道蛋白,直接感受膜张力的变化而开放,介导广泛的物质跨膜通透。MscL普遍存在于细菌,且不同MscL氨基酸序列具有很高的保守性,而在人和哺乳动物中没有MscL的同源体。目前,在新药研发中,MscL是热门的研究对象,对MscL与抗生素的相互作用及其潜在用途进行了综述。展开更多
大电导机械敏感性离子通道(Mechanosensitive channel of large conductance, MscL)是细菌上的一种机械敏感性离子通道,起到紧急释放阀门的作用,避免细菌在外界渗透压剧烈下降时破裂死亡。MscL开放口径大,易于修饰、突变和表达,重构于...大电导机械敏感性离子通道(Mechanosensitive channel of large conductance, MscL)是细菌上的一种机械敏感性离子通道,起到紧急释放阀门的作用,避免细菌在外界渗透压剧烈下降时破裂死亡。MscL开放口径大,易于修饰、突变和表达,重构于脂质体上仍有活性,是生物纳米技术领域良好的工具分子。近年来MscL在生物纳米技术领域的应用已有大量成果,研究发现通过修饰、突变后的MscL蛋白可以作为纳米给药系统上的分子开关,具有通透孔径和电荷的选择性,并受到光、pH及磁场等环境因素调控。对MscL在生物纳米技术领域的应用研究进行综述。展开更多
【目的】细菌机械敏感性离子通道MscS能够在细菌周围环境渗透压急剧降低时,打开并释放胞内内容物,平衡内外渗透压差,使细菌存活。鉴于其广泛分布在各种细菌中,而在哺乳动物中未发现其同源体,MscS被认为是一种新型抗生素靶点。MscS一个...【目的】细菌机械敏感性离子通道MscS能够在细菌周围环境渗透压急剧降低时,打开并释放胞内内容物,平衡内外渗透压差,使细菌存活。鉴于其广泛分布在各种细菌中,而在哺乳动物中未发现其同源体,MscS被认为是一种新型抗生素靶点。MscS一个独特的开放特征是具有失活特性,即在持续的机械刺激条件下,MscS从开放状态进入一种非离子通透的失活状态,从而避免因通道持续开放引起大量内容物流失导致细菌死亡。该研究的目的是鉴定影响MscS失活的关键氨基酸,为靶向Msc S的药物设计提供思路。【方法】采用分子克隆方法制备Msc S Cyto-helix(P166−I170)半胱氨酸突变体,利用巯基化合物MTSET^(+)结合半胱氨酸从而对其侧链基团进行修饰,并通过低渗刺激实验,检测表达MscS半胱氨酸突变体的大肠杆菌分别在无或有MTSET^(+)处理下,低渗刺激诱发通道开放后的存活率筛选显著影响通道功能的突变体。利用电生理膜片钳方法检测突变体在MTSET^(+)处理前后通道失活特性的变化,结合定点突变手段进一步探讨失活机制。【结果】MTSET^(+)处理导致表达半胱氨酸突变体G168C-MscS的大肠杆菌在低渗刺激后存活率极大降低;G168C-MscS在结合MTSET^(+)后失去失活特性,保持持续开放,是导致细菌胞内内容物大量流失并死亡的重要原因;酪氨酸突变G168Y-MscS、亮氨酸突变G168L-MscS和赖氨酸突变G168K-MscS的失活特性与野生型WT-MscS一致,而天冬氨酸突变G168D、缬氨酸突变G168V和异亮氨酸突变G168I的失活速率显著降低,尤其是G168I-MscS失去失活特性,表明MscS 168位点是影响通道失活的关键位点,并且通道失活特性与该位点氨基酸侧链基团的大小及电荷性质相关。【结论】G168位点甘氨酸是影响MscS通道失活的关键氨基酸。展开更多
文摘抗生素自问世以来,为疟疾、结核等传染性疾病的治疗做出了突出贡献,但是随着抗生素的滥用,耐药性细菌不断增多与细菌致病能力日益增强,导致有效的抗生素资源日益枯竭。因此,人类迫切需要寻找到抗菌新药或者抗生素的增效剂。大电导的机械敏感通道(mechanosensitive channel of large conductance,MscL)是一类位于细菌细胞膜上的通道蛋白,直接感受膜张力的变化而开放,介导广泛的物质跨膜通透。MscL普遍存在于细菌,且不同MscL氨基酸序列具有很高的保守性,而在人和哺乳动物中没有MscL的同源体。目前,在新药研发中,MscL是热门的研究对象,对MscL与抗生素的相互作用及其潜在用途进行了综述。
文摘大电导机械敏感性离子通道(Mechanosensitive channel of large conductance, MscL)是细菌上的一种机械敏感性离子通道,起到紧急释放阀门的作用,避免细菌在外界渗透压剧烈下降时破裂死亡。MscL开放口径大,易于修饰、突变和表达,重构于脂质体上仍有活性,是生物纳米技术领域良好的工具分子。近年来MscL在生物纳米技术领域的应用已有大量成果,研究发现通过修饰、突变后的MscL蛋白可以作为纳米给药系统上的分子开关,具有通透孔径和电荷的选择性,并受到光、pH及磁场等环境因素调控。对MscL在生物纳米技术领域的应用研究进行综述。
文摘【目的】细菌机械敏感性离子通道MscS能够在细菌周围环境渗透压急剧降低时,打开并释放胞内内容物,平衡内外渗透压差,使细菌存活。鉴于其广泛分布在各种细菌中,而在哺乳动物中未发现其同源体,MscS被认为是一种新型抗生素靶点。MscS一个独特的开放特征是具有失活特性,即在持续的机械刺激条件下,MscS从开放状态进入一种非离子通透的失活状态,从而避免因通道持续开放引起大量内容物流失导致细菌死亡。该研究的目的是鉴定影响MscS失活的关键氨基酸,为靶向Msc S的药物设计提供思路。【方法】采用分子克隆方法制备Msc S Cyto-helix(P166−I170)半胱氨酸突变体,利用巯基化合物MTSET^(+)结合半胱氨酸从而对其侧链基团进行修饰,并通过低渗刺激实验,检测表达MscS半胱氨酸突变体的大肠杆菌分别在无或有MTSET^(+)处理下,低渗刺激诱发通道开放后的存活率筛选显著影响通道功能的突变体。利用电生理膜片钳方法检测突变体在MTSET^(+)处理前后通道失活特性的变化,结合定点突变手段进一步探讨失活机制。【结果】MTSET^(+)处理导致表达半胱氨酸突变体G168C-MscS的大肠杆菌在低渗刺激后存活率极大降低;G168C-MscS在结合MTSET^(+)后失去失活特性,保持持续开放,是导致细菌胞内内容物大量流失并死亡的重要原因;酪氨酸突变G168Y-MscS、亮氨酸突变G168L-MscS和赖氨酸突变G168K-MscS的失活特性与野生型WT-MscS一致,而天冬氨酸突变G168D、缬氨酸突变G168V和异亮氨酸突变G168I的失活速率显著降低,尤其是G168I-MscS失去失活特性,表明MscS 168位点是影响通道失活的关键位点,并且通道失活特性与该位点氨基酸侧链基团的大小及电荷性质相关。【结论】G168位点甘氨酸是影响MscS通道失活的关键氨基酸。