针对流水线型逐次逼近模数转换器(Pipelined SAR ADC)中残差放大器的核心运放功耗过高,从而严重限制ADC能效上限的问题,本文提出了一种新型的基于CMOS开关的自偏置全差分环形放大器(CMOS Self-biased Fully Differential Ring Amplifier...针对流水线型逐次逼近模数转换器(Pipelined SAR ADC)中残差放大器的核心运放功耗过高,从而严重限制ADC能效上限的问题,本文提出了一种新型的基于CMOS开关的自偏置全差分环形放大器(CMOS Self-biased Fully Differential Ring Amplifier,CSFRA),来替代传统运放。CSFRA通过引入CMOS开关自偏置和全差分结构,同时在非放大时序中关断电路,降低了残差放大器功耗。基于所提CSFRA,配合可降低开关功耗的检测和跳过切换方案,设计了一款12 Bit 10 MS/s的Pipelined SAR ADC。该电路基于MXIC L18B 180 nm CMOS工艺实现,实验结果表明,在10 MS/s的采样率下,该电路的SFDR和SNDR分别为75.3 dB和61.3 dB,功耗仅为944μW,其中CSFRA功耗仅为368μW。展开更多
文摘针对流水线型逐次逼近模数转换器(Pipelined SAR ADC)中残差放大器的核心运放功耗过高,从而严重限制ADC能效上限的问题,本文提出了一种新型的基于CMOS开关的自偏置全差分环形放大器(CMOS Self-biased Fully Differential Ring Amplifier,CSFRA),来替代传统运放。CSFRA通过引入CMOS开关自偏置和全差分结构,同时在非放大时序中关断电路,降低了残差放大器功耗。基于所提CSFRA,配合可降低开关功耗的检测和跳过切换方案,设计了一款12 Bit 10 MS/s的Pipelined SAR ADC。该电路基于MXIC L18B 180 nm CMOS工艺实现,实验结果表明,在10 MS/s的采样率下,该电路的SFDR和SNDR分别为75.3 dB和61.3 dB,功耗仅为944μW,其中CSFRA功耗仅为368μW。