为深入揭示民航运输过程中锂离子电池热失控引发燃爆的致灾机理,基于受限空间压力容器设计并搭建了锂离子电池燃爆多参量实验系统,在96和61kPa的不同初始压力条件下,电加热触发荷电量(state of charge,SOC)为100%的18650型锂离子电池发...为深入揭示民航运输过程中锂离子电池热失控引发燃爆的致灾机理,基于受限空间压力容器设计并搭建了锂离子电池燃爆多参量实验系统,在96和61kPa的不同初始压力条件下,电加热触发荷电量(state of charge,SOC)为100%的18650型锂离子电池发生燃爆,记录与分析燃爆压力、燃爆响应温度及燃爆释放气体浓度等参数变化规律。结果表明:初始环境压力与电池数量对锂离子电池燃爆灾害规律具有关键影响,96kPa条件下,锂离子电池燃爆剧烈,释放能量高;61kPa条件下,锂离子电池燃爆时间较长,燃爆响应温度较高,且初始低压条件下锂离子电池燃爆需O2量高,产生更多CO2与CO。展开更多
文摘为深入揭示民航运输过程中锂离子电池热失控引发燃爆的致灾机理,基于受限空间压力容器设计并搭建了锂离子电池燃爆多参量实验系统,在96和61kPa的不同初始压力条件下,电加热触发荷电量(state of charge,SOC)为100%的18650型锂离子电池发生燃爆,记录与分析燃爆压力、燃爆响应温度及燃爆释放气体浓度等参数变化规律。结果表明:初始环境压力与电池数量对锂离子电池燃爆灾害规律具有关键影响,96kPa条件下,锂离子电池燃爆剧烈,释放能量高;61kPa条件下,锂离子电池燃爆时间较长,燃爆响应温度较高,且初始低压条件下锂离子电池燃爆需O2量高,产生更多CO2与CO。