高精度联邦学习模型的训练需要消耗大量的用户本地资源,参与训练的用户能够通过私自出售联合训练的模型获得非法收益.为实现联邦学习模型的产权保护,利用深度学习后门技术不影响主任务精度而仅对少量触发集样本造成误分类的特征,构建一...高精度联邦学习模型的训练需要消耗大量的用户本地资源,参与训练的用户能够通过私自出售联合训练的模型获得非法收益.为实现联邦学习模型的产权保护,利用深度学习后门技术不影响主任务精度而仅对少量触发集样本造成误分类的特征,构建一种基于模型后门的联邦学习水印(federated learning watermark based on backdoor,FLWB)方案,能够允许各参与训练的用户在其本地模型中分别嵌入私有水印,再通过云端的模型聚合操作将私有后门水印映射到全局模型作为联邦学习的全局水印.之后提出分步训练方法增强各私有后门水印在全局模型的表达效果,使得FLWB方案能够在不影响全局模型精度的前提下容纳各参与用户的私有水印.理论分析证明了FLWB方案的安全性,实验验证分步训练方法能够让全局模型在仅造成1%主任务精度损失的情况下有效容纳参与训练用户的私有水印.最后,采用模型压缩攻击和模型微调攻击对FLWB方案进行攻击测试,其结果表明FLWB方案在模型压缩到30%时仍能保留80%以上的水印,在4种不同的微调攻击下能保留90%以上的水印,具有很好的鲁棒性.展开更多
利用深度学习对声呐图像进行目标检测是近年来的研究热点,然而声呐图像存在目标尺度分布集中、数据获取难等问题,导致检测效果难以满足需求。针对该问题,提出了一种基于可变尺度先验框的目标检测方法。首先,考虑到声呐图像中目标的尺度...利用深度学习对声呐图像进行目标检测是近年来的研究热点,然而声呐图像存在目标尺度分布集中、数据获取难等问题,导致检测效果难以满足需求。针对该问题,提出了一种基于可变尺度先验框的目标检测方法。首先,考虑到声呐图像中目标的尺度分布具有其特殊性,基于先验统计生成可变尺度先验框。其次,为了解决声呐图像稀缺的难题,采用数据增强的方法对训练集进行扩充。最后,探索了模型的轻量化,通过删减模型的大目标检测层,在不降低模型精度的同时简化模型结构。为了评估算法的有效性,以前视声呐图像为例进行了综合试验,平均精度(mean average precision,mAP)@0.75和mAP@0.5:0.95分别达0.585和0.559,较原Yolov5网络分别提升了5.8%和3.1%,同时每秒10亿次浮点运算次数下降到14.9。结果表明,所提算法具有更高的精度和更轻量化的模型结构。展开更多
文摘高精度联邦学习模型的训练需要消耗大量的用户本地资源,参与训练的用户能够通过私自出售联合训练的模型获得非法收益.为实现联邦学习模型的产权保护,利用深度学习后门技术不影响主任务精度而仅对少量触发集样本造成误分类的特征,构建一种基于模型后门的联邦学习水印(federated learning watermark based on backdoor,FLWB)方案,能够允许各参与训练的用户在其本地模型中分别嵌入私有水印,再通过云端的模型聚合操作将私有后门水印映射到全局模型作为联邦学习的全局水印.之后提出分步训练方法增强各私有后门水印在全局模型的表达效果,使得FLWB方案能够在不影响全局模型精度的前提下容纳各参与用户的私有水印.理论分析证明了FLWB方案的安全性,实验验证分步训练方法能够让全局模型在仅造成1%主任务精度损失的情况下有效容纳参与训练用户的私有水印.最后,采用模型压缩攻击和模型微调攻击对FLWB方案进行攻击测试,其结果表明FLWB方案在模型压缩到30%时仍能保留80%以上的水印,在4种不同的微调攻击下能保留90%以上的水印,具有很好的鲁棒性.
文摘利用深度学习对声呐图像进行目标检测是近年来的研究热点,然而声呐图像存在目标尺度分布集中、数据获取难等问题,导致检测效果难以满足需求。针对该问题,提出了一种基于可变尺度先验框的目标检测方法。首先,考虑到声呐图像中目标的尺度分布具有其特殊性,基于先验统计生成可变尺度先验框。其次,为了解决声呐图像稀缺的难题,采用数据增强的方法对训练集进行扩充。最后,探索了模型的轻量化,通过删减模型的大目标检测层,在不降低模型精度的同时简化模型结构。为了评估算法的有效性,以前视声呐图像为例进行了综合试验,平均精度(mean average precision,mAP)@0.75和mAP@0.5:0.95分别达0.585和0.559,较原Yolov5网络分别提升了5.8%和3.1%,同时每秒10亿次浮点运算次数下降到14.9。结果表明,所提算法具有更高的精度和更轻量化的模型结构。