期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于YOLACT的行道树靶标点云分割方法 被引量:2
1
作者 李秋洁 童岳凯 +3 位作者 薛玉玺 徐志强 李相程 刘旭 《林业工程学报》 CSCD 北大核心 2022年第4期144-150,共7页
针对复杂城区环境下行道树靶标点云检测难度较大,导致基于激光雷达(LiDAR)的果园对靶施药技术难以推广的问题,提出基于YOLACT的行道树靶标点云分割方法,为行道树对靶施药提供基础数据。首先,应用移动激光扫描(MLS)技术采集街道一侧的三... 针对复杂城区环境下行道树靶标点云检测难度较大,导致基于激光雷达(LiDAR)的果园对靶施药技术难以推广的问题,提出基于YOLACT的行道树靶标点云分割方法,为行道树对靶施药提供基础数据。首先,应用移动激光扫描(MLS)技术采集街道一侧的三维点云数据;然后,提取深度、回波强度和回波次数信息,建立由二维LiDAR扫描线组成的三通道街道图像;最后,使用图像实例分割算法YOLACT建立行道树靶标分割模型,从街道图像中分割出每一棵行道树靶标。实验采集了一段300 m长街道两侧的点云数据,通过无损图像转换、切片、翻转扩充等处理得到1948张像素720×720的街道点云图像,按照6∶2∶2的比例划分出训练集、验证集和测试集,用来训练和测试行道树靶标分割模型。在386张测试图像上,令检测框与真值框的交并比阈值为0.5~0.9,以0.05为步长增加,得到的平均精确率为0.973,平均召回率为0.985,平均F1分数为0.979,平均每条LiDAR扫描线的处理时间是12.903 ms。实验结果表明,提出的方法能够快速准确分割出行道树靶标,为行道树对靶施药提供实时数据。 展开更多
关键词 对靶施药 行道树 点云分割 实例分割 YOLACT
下载PDF
行李箱内外板拉深工艺分析 被引量:3
2
作者 黄文伟 周小燕 +1 位作者 赵健 李相程 《模具工业》 2010年第3期36-38,共3页
覆盖件冲压成形工艺中拉深是至关重要的环节,以某行李箱内外板拉深为例,详细探讨影响拉深件质量的工艺因素,为解决覆盖件其他缺陷问题提供一个良好的基础。
关键词 行李箱 起皱 压料面 凸模 反成形
下载PDF
基于移动激光扫描的行道树树冠点云逐点检测
3
作者 李秋洁 李相程 《南京林业大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第1期205-213,共9页
【目的】针对行道树树冠在线检测问题,研究基于移动激光扫描(mobile laser scanning,MLS)的行道树树冠点云逐点检测方法,构建能够在线、快速、准确检测出行道树树冠点云的高性能树冠检测器,为行道树对靶施药提供基础数据。【方法】应用... 【目的】针对行道树树冠在线检测问题,研究基于移动激光扫描(mobile laser scanning,MLS)的行道树树冠点云逐点检测方法,构建能够在线、快速、准确检测出行道树树冠点云的高性能树冠检测器,为行道树对靶施药提供基础数据。【方法】应用搭载一个2D激光雷达(light detection and ranging,LiDAR)的MLS系统实时采集街道轮廓线测量数据,从中提取点云三维坐标、一次回波强度和回波次数等属性;构建点云半径为δ的球域搜索方法,实现点云邻域在线快速查询;从待识别点δ球域中提取宽度、深度、高度、维度、密度、次数和强度7类点云局部特征;采用监督学习算法融合点云局部特征、训练树冠检测器,预测待识别点的类别。采集一段长137 m街道的点云数据,开展了邻域搜索方法、监督学习算法、点云局部特征和树冠逐点检测器4个对比实验。【结果】构建的δ球域搜索方法的搜索时间为k-D树法的10.90%;在神经网络(neural network,NN)、支持向量机(support vector machine,SVM)、Boosting和随机森林(random forest,RF)4种监督学习算法中,RF算法得到的树冠检测器分类精度最好;与单类特征相比,组合特征具有更好的泛化性能;本研究方法设计的树冠逐点检测器在检测精度和效率上均优于已有方法,球域半径δ在0.1~1.0 m范围内变化时,测试集F_(1)分数≥97.74%。【结论】提出的方法能够从实时采集的MLS点云数据中快速、准确地检测出行道树树冠点云,为行道树对靶施药提供数据支撑。 展开更多
关键词 对靶施药 行道树 树冠点云检测 逐点分类 移动激光扫描
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部