通过分析基于交并比(Intersection over union,IoU)预测的尺度估计模型的梯度更新过程,发现其在训练和推理过程仅将IoU作为度量,缺乏对预测框和真实目标框中心点距离的约束,导致外观模型更新过程中模板受到污染,前景和背景分类时定位出...通过分析基于交并比(Intersection over union,IoU)预测的尺度估计模型的梯度更新过程,发现其在训练和推理过程仅将IoU作为度量,缺乏对预测框和真实目标框中心点距离的约束,导致外观模型更新过程中模板受到污染,前景和背景分类时定位出现偏差.基于此发现,构建了一种结合IoU和中心点距离的新度量NDIoU(Normalization distance IoU),在此基础上提出一种新的尺度估计方法,并将其嵌入判别式跟踪框架.即在训练阶段以NDIoU为标签,设计了具有中心点距离约束的损失函数监督网络的学习,在线推理期间通过最大化NDIoU微调目标尺度,以帮助外观模型更新时获得更加准确的样本.在七个数据集上与相关主流方法进行对比,所提方法的综合性能优于所有对比算法.特别是在GOT-10k数据集上,所提方法的AO、SR_(0.50)和SR_(0.75)三个指标达到了65.4%、78.7%和53.4%,分别超过基线模型4.3%、7.0%和4.2%.展开更多
文摘通过分析基于交并比(Intersection over union,IoU)预测的尺度估计模型的梯度更新过程,发现其在训练和推理过程仅将IoU作为度量,缺乏对预测框和真实目标框中心点距离的约束,导致外观模型更新过程中模板受到污染,前景和背景分类时定位出现偏差.基于此发现,构建了一种结合IoU和中心点距离的新度量NDIoU(Normalization distance IoU),在此基础上提出一种新的尺度估计方法,并将其嵌入判别式跟踪框架.即在训练阶段以NDIoU为标签,设计了具有中心点距离约束的损失函数监督网络的学习,在线推理期间通过最大化NDIoU微调目标尺度,以帮助外观模型更新时获得更加准确的样本.在七个数据集上与相关主流方法进行对比,所提方法的综合性能优于所有对比算法.特别是在GOT-10k数据集上,所提方法的AO、SR_(0.50)和SR_(0.75)三个指标达到了65.4%、78.7%和53.4%,分别超过基线模型4.3%、7.0%和4.2%.