A multi-functional full-space metasurface based on frequency and polarization multiplexing is proposed.The metasurface unit consists of metallic patterns printed on the two faces of a single-layered dielectric substra...A multi-functional full-space metasurface based on frequency and polarization multiplexing is proposed.The metasurface unit consists of metallic patterns printed on the two faces of a single-layered dielectric substrate.The unit cell can control electromagnetic wavefronts to achieve a broadband transmission with amplitudes greater than 0.4 from 4.4 to 10.4 GHz.Meanwhile,at 11.7 GHz and 15.4 GHz,four high-efficiency reflection channels with a reflection amplitude greater than 0.8 are also realized.When illuminated by linearly polarized waves,five different functions can be realized at five different frequencies,which are demonstrated by theoretical calculations,full-wave simulations,and experimental measurements.展开更多
基金This work was supported by the Natural Science Foundation of Heilongjiang Province(No.LH2022F053)the National Natural Science Foundation of China(Nos.62275063 and 62171153)+3 种基金the Scientific and Technological Development Project of the Central Government Guiding Local(No.SBZY2021E076)the Open Project of State Key Laboratory of Millimeter Waves(No.K202309)the Postdoctoral Research Fund Project of Heilongjiang Province of China(No.LBH-Q21195)the Fundamental Research Funds of Heilongjiang Provincial Universities of China(No.145209151).
文摘A multi-functional full-space metasurface based on frequency and polarization multiplexing is proposed.The metasurface unit consists of metallic patterns printed on the two faces of a single-layered dielectric substrate.The unit cell can control electromagnetic wavefronts to achieve a broadband transmission with amplitudes greater than 0.4 from 4.4 to 10.4 GHz.Meanwhile,at 11.7 GHz and 15.4 GHz,four high-efficiency reflection channels with a reflection amplitude greater than 0.8 are also realized.When illuminated by linearly polarized waves,five different functions can be realized at five different frequencies,which are demonstrated by theoretical calculations,full-wave simulations,and experimental measurements.