15%Ag-added cubic perovskites Sr0.9La0.1TiO3 and Ruddlesden-Popper (RP) phases Sr2.7La0.3Ti2O7 were fabricated via hydrothermal synthesis, cold pressing and high-temperature sintering. The structure and thermoelectr...15%Ag-added cubic perovskites Sr0.9La0.1TiO3 and Ruddlesden-Popper (RP) phases Sr2.7La0.3Ti2O7 were fabricated via hydrothermal synthesis, cold pressing and high-temperature sintering. The structure and thermoelectric properties were also investi-gated for all samples. The results indicated that Ag precipitated as a second phase. Ag addition made electrical conductivity and ab-solute Seebeck coefficient enhanced, as a result, the ZT values were enhanced both for two series. Compared with cubic perovskite, RP phase was subjected to smaller impact by Ag addition. The reasons for enhancing ZT value and the different impact for two series by Ag addition were also discussed.展开更多
基金Project supported by National Natural Science Foundation of China(11204001,10804110,11174004)Anhui Provincial Natural Science Foundation(1208085QA07)
文摘15%Ag-added cubic perovskites Sr0.9La0.1TiO3 and Ruddlesden-Popper (RP) phases Sr2.7La0.3Ti2O7 were fabricated via hydrothermal synthesis, cold pressing and high-temperature sintering. The structure and thermoelectric properties were also investi-gated for all samples. The results indicated that Ag precipitated as a second phase. Ag addition made electrical conductivity and ab-solute Seebeck coefficient enhanced, as a result, the ZT values were enhanced both for two series. Compared with cubic perovskite, RP phase was subjected to smaller impact by Ag addition. The reasons for enhancing ZT value and the different impact for two series by Ag addition were also discussed.