Improving the slow kinetics of alkaline hydrogen electrode reactions, involving hydrogen oxidation and evolution reactions(HOR/HER) is highly desirable for accelerating the commercialization of alkaline exchange membr...Improving the slow kinetics of alkaline hydrogen electrode reactions, involving hydrogen oxidation and evolution reactions(HOR/HER) is highly desirable for accelerating the commercialization of alkaline exchange membrane-based fuel cells(AEMFCs) and water electrolyzers(AEMWEs). However, fundamental understanding of the mechanism for HOR/HER catalysis under alkaline media is still debatable. Here we develop an amorphous tungsten oxide clusters modified iridium-tungsten nanocrystallines(Ir WOx)which exhibited by far the highest exchange current density and mass activity, about three times higher than the commercial Pt/C toward alkaline HOR/HER. Density functional theory(DFT) calculations reveal the WOxclusters act as a pivotal role to boost reversible hydrogen electrode reactions in alkaline condition but via different mechanisms, which are, hydrogen binding energy(HBE) mechanism for HOR and bifunctional mechanism for HER. This work is expected to promote our fundamental understanding about the alkaline HOR/HER catalysis and provide a new avenue for rational design of highly efficient electrocatalysts toward HOR/HER under alkaline electrolytes.展开更多
基金supported by the National Key Research and Development Program of China (2018YFB1502302)the National Natural Science Foundation of China (21972107, 21832004, and 21633008)+2 种基金the National Natural Science Foundation of Jiangsu Province (BK20191186)the Fundamental Research Funds for the Central UniversitiesLarge-scale Instrument and Equipment Sharing Foundation of Wuhan University。
文摘Improving the slow kinetics of alkaline hydrogen electrode reactions, involving hydrogen oxidation and evolution reactions(HOR/HER) is highly desirable for accelerating the commercialization of alkaline exchange membrane-based fuel cells(AEMFCs) and water electrolyzers(AEMWEs). However, fundamental understanding of the mechanism for HOR/HER catalysis under alkaline media is still debatable. Here we develop an amorphous tungsten oxide clusters modified iridium-tungsten nanocrystallines(Ir WOx)which exhibited by far the highest exchange current density and mass activity, about three times higher than the commercial Pt/C toward alkaline HOR/HER. Density functional theory(DFT) calculations reveal the WOxclusters act as a pivotal role to boost reversible hydrogen electrode reactions in alkaline condition but via different mechanisms, which are, hydrogen binding energy(HBE) mechanism for HOR and bifunctional mechanism for HER. This work is expected to promote our fundamental understanding about the alkaline HOR/HER catalysis and provide a new avenue for rational design of highly efficient electrocatalysts toward HOR/HER under alkaline electrolytes.