目的探讨机器学习算法构建腹部手术术后脓毒症患者死亡风险预测模型的可行性。方法采用病例-对照研究设计方案,从公共重症监护医学信息数据库(Medical Information Mart for Intensive CareⅣ,MIMIC-Ⅳv1.0)中筛选出行腹部手术后发生脓...目的探讨机器学习算法构建腹部手术术后脓毒症患者死亡风险预测模型的可行性。方法采用病例-对照研究设计方案,从公共重症监护医学信息数据库(Medical Information Mart for Intensive CareⅣ,MIMIC-Ⅳv1.0)中筛选出行腹部手术后发生脓毒症的患者,研究终点事件定义为患者入院后90 d内死亡。根据死亡与否将数据集随机拆分为训练数据集(70%)与测试数据集(30%),在训练数据集上基于Logistic回归(logistic regression,LR)、梯度提升树(gradient boosting decision tree,GBDT)、随机森林(random forest,RF)、支持向量机(support vector machine,SVM)和自适应提升(adaptive boosting,AdaBoost)算法构建预测死亡风险模型;在测试数据集上通过受试者工作曲线(receiver operating characteristic curve,ROC)和曲线下面积(area under the ROC curve,AUC)、敏感性、特异性、阳性预测值、阴性预测值、F1分数和准确率来评估模型效能。结果最终986例患者纳入本研究,其中251例(25.5%)患者入院后90 d内死亡,LR、GBDT、RF、SVM及AdaBoost模型的AUC依次为0.852、0.903、0.921、0.940和0.906,其中SVM的AUC最高,预测性能更好,而LR模型效能最差。结论基于GBDT、RF、SVM及AdaBoost这4种算法建立的腹部手术术后脓毒症死亡率预测模型的效能优于传统的LR模型,可能有助于临床决策,改善不良结局。展开更多
文摘目的探讨机器学习算法构建腹部手术术后脓毒症患者死亡风险预测模型的可行性。方法采用病例-对照研究设计方案,从公共重症监护医学信息数据库(Medical Information Mart for Intensive CareⅣ,MIMIC-Ⅳv1.0)中筛选出行腹部手术后发生脓毒症的患者,研究终点事件定义为患者入院后90 d内死亡。根据死亡与否将数据集随机拆分为训练数据集(70%)与测试数据集(30%),在训练数据集上基于Logistic回归(logistic regression,LR)、梯度提升树(gradient boosting decision tree,GBDT)、随机森林(random forest,RF)、支持向量机(support vector machine,SVM)和自适应提升(adaptive boosting,AdaBoost)算法构建预测死亡风险模型;在测试数据集上通过受试者工作曲线(receiver operating characteristic curve,ROC)和曲线下面积(area under the ROC curve,AUC)、敏感性、特异性、阳性预测值、阴性预测值、F1分数和准确率来评估模型效能。结果最终986例患者纳入本研究,其中251例(25.5%)患者入院后90 d内死亡,LR、GBDT、RF、SVM及AdaBoost模型的AUC依次为0.852、0.903、0.921、0.940和0.906,其中SVM的AUC最高,预测性能更好,而LR模型效能最差。结论基于GBDT、RF、SVM及AdaBoost这4种算法建立的腹部手术术后脓毒症死亡率预测模型的效能优于传统的LR模型,可能有助于临床决策,改善不良结局。
文摘目的利用贝叶斯网络(Bayesian network,BN)算法建立全膝关节置换术(total knee replacement,TKR)后认知功能障碍(postoperative cognitive dysfunction,POCD)的风险预测模型,并探讨模型的预测性能。方法采用病例-对照研究设计方案,选择陆军军医大学第一附属医院关节外科2017年1月至2021年12月行TKR的住院患者1260例。入院主要诊断为左/右膝关节重度骨性关节炎,其中男性240例(19.0%),女性1020例(81.0%);年龄23~79(66.73±8.46)岁;体质指数(BMI)(25.08±5.09)kg/m2。将术后(手术结束至出院期间)发生POCD的患者(71例)按照7∶3随机分为A1组(70%)和B1组(30%),未发生POCD的患者(1189例)按照7∶3随机分为A2组(70%)和B2组(30%)。A1组与A2组共同构成A组(训练数据集),B1组与B2组则为B组(测试数据集),其中A组用于模型训练,B组用于模型测试。筛选TKR相关围术期麻醉决策、病情转归及住院时间等36项指标作为节点,利用BN算法建立各节点的概率分布模型图,预测POCD发生风险的概率,以期住院时间最短,促进最大化患者康复。结果基于BN算法建立的预测TKR后POCD发生风险模型,训练集的受试者工作曲线下面积(area under the subject curve,AUC)值为0.9661(95%CI:0.9541~0.9784),测试集AUC值为0.8974(95%CI:0.8672~0.9285),准确性分别为96.43%(95%CI:0.9511~0.9764)和93.44%(95%CI:0.9092~0.9596)。结论基于BN算法建立的预测TKR后POCD发生风险的模型预测性能较好且准确率较高。
文摘目的开发并验证一个基于术中指标在非心胸手术患者术后呼吸衰竭(postoperative respiratory failure,PRF)的机器学习预测模型。方法纳入西南医院2014年1月至2019年6月行非心胸手术患者705例[训练集565例(PRF 128例),测试集140例(PRF 35例)]、华西医院2019年5月至2020年1月和中山医院2019年6月至2019年12月行非心胸手术患者164例[验证集164例(PRF 41例)]。提取患者19项术中预测指标,通过6种机器学习算法:梯度提升模型(gradient boosting model,GBM)、广义线性模型(generalize linear model,GLM)、k-近邻(k-nearest neighbor,KNN)、朴素贝叶斯(naive bayes,NB)、神经网络(neural network,NNET),支持向量机(support vector machine linear,SVM)开发及测试模型,并在验证集进行验证,通过各模型间性能对比,筛选出最佳模型,最终建立网页预测模型。结果GBM获得了最佳性能,准确性76.2%(95%CI:69.0%~82.5%),受试者操作曲线下面积(area under the subject curve,AUC):0.794(95%CI:0.707~0.882),精准-召回曲线下面积(area under the precision-recall curve,AUPRC):0.641,Brier评分:0.169。结论基于GBM算法开发的模型具有更高的泛化性、准确性、临床实用性,并有助于避免过度拟合。建立的网页预测模型(http://150.158.55.139)可为患者PRF提供新的动态评估方法,量化手术风险。