The interface properties in two-dimensional(2D)layered materials and their van der Waals(vdW)homo-/heterostructures are of importance in both uncovering novel physical phenomena and optimizing device performance.Despi...The interface properties in two-dimensional(2D)layered materials and their van der Waals(vdW)homo-/heterostructures are of importance in both uncovering novel physical phenomena and optimizing device performance.Despite considerable research interest and enthusiasm direct toward the interlayer coupling in 2D homo-and heterostructures,there is limited research on the coupling at the 2D layered material-substrate interface.This limitation is due to the challenges in achieving direct detection.Currently,the coupling mechanisms at the 2D layered material-substrate interface is ambiguous,which needs greater attention.In this study,we have systematically investigated the interface coupling between monolayer WS_(2)and its supported substrates using high-temperature and high-vacuum in-situ Raman spectroscopy through monitoring the low-frequency Raman mode of monolayer WS_(2).Our findings reveal that both interfacial spacing and strain can significantly affect the coupling strength between the monolayer WS_(2)and the supported substrate.More notably,we found that the strategic introduction of appropriate interfacial strain can effectively enhance the interface coupling.Consequently,we have succeeded in achieving effective regulation of the sample-substrate coupling via a convenient way of controlling the cooling process during annealing.Our findings contribute to a deeper understanding of the coupling correlation between 2D layered materials and substrates,which is of great significance for the design and optimization of high-performance devices based on 2D layered semiconductors.展开更多
基金supported by the National Key R&D Program of China(2018YFA0703700)the National Natural Science Foundation of China(62374037)+1 种基金Shanghai Municipal Natural Science Foundation(20ZR1403200)the National Young 1000 Talent Plan of China。
文摘The interface properties in two-dimensional(2D)layered materials and their van der Waals(vdW)homo-/heterostructures are of importance in both uncovering novel physical phenomena and optimizing device performance.Despite considerable research interest and enthusiasm direct toward the interlayer coupling in 2D homo-and heterostructures,there is limited research on the coupling at the 2D layered material-substrate interface.This limitation is due to the challenges in achieving direct detection.Currently,the coupling mechanisms at the 2D layered material-substrate interface is ambiguous,which needs greater attention.In this study,we have systematically investigated the interface coupling between monolayer WS_(2)and its supported substrates using high-temperature and high-vacuum in-situ Raman spectroscopy through monitoring the low-frequency Raman mode of monolayer WS_(2).Our findings reveal that both interfacial spacing and strain can significantly affect the coupling strength between the monolayer WS_(2)and the supported substrate.More notably,we found that the strategic introduction of appropriate interfacial strain can effectively enhance the interface coupling.Consequently,we have succeeded in achieving effective regulation of the sample-substrate coupling via a convenient way of controlling the cooling process during annealing.Our findings contribute to a deeper understanding of the coupling correlation between 2D layered materials and substrates,which is of great significance for the design and optimization of high-performance devices based on 2D layered semiconductors.