The approximate analytical frequency chirps and the critical distances for cross-phase modulation induced optical wave breaking(OWB) of the initial hyperbolic-secant optical pulses propagating in optical fibers with q...The approximate analytical frequency chirps and the critical distances for cross-phase modulation induced optical wave breaking(OWB) of the initial hyperbolic-secant optical pulses propagating in optical fibers with quintic nonlinearity(QN) are presented. The pulse evolutions in terms of the frequency chirps, shapes and spectra are numerically calculated in the normal dispersion regime. The results reveal that, depending on different QN parameters, the traditional OWB or soliton or soliton pulse trains may occur. The approximate analytical critical distances are found to be in good agreement with the numerical ones only for the traditional OWB whereas the approximate analytical frequency chirps accords well with the numerical ones at the initial evolution stages of the pulses.展开更多
基金The Key Project of Science and Technology of the Ministry of Education(No.210186)the Major Project of Natural Science Supported by the Educational Department of Sichuan Province(Nos.13ZA008112ZB09)
基金Supported by the Postdoctoral Fund of China under Grant No.2011M501402the Key Project of Chinese Ministry of Education under Grant No.210186+2 种基金the Major Project of Natural Science Supported by the Educational Department of Sichuan Province under Grant No.13ZA0081the Key Project of National Natural Science Foundation of China under Grant No 61435010the National Natural Science Foundation of China under Grant No.61275039
文摘The approximate analytical frequency chirps and the critical distances for cross-phase modulation induced optical wave breaking(OWB) of the initial hyperbolic-secant optical pulses propagating in optical fibers with quintic nonlinearity(QN) are presented. The pulse evolutions in terms of the frequency chirps, shapes and spectra are numerically calculated in the normal dispersion regime. The results reveal that, depending on different QN parameters, the traditional OWB or soliton or soliton pulse trains may occur. The approximate analytical critical distances are found to be in good agreement with the numerical ones only for the traditional OWB whereas the approximate analytical frequency chirps accords well with the numerical ones at the initial evolution stages of the pulses.