A joined failure mechanism of translation and rotation was proposed for the stability analysis of deep tunnel face, and the upper bound solution of supporting force of deep tunnel was calculated under pore water press...A joined failure mechanism of translation and rotation was proposed for the stability analysis of deep tunnel face, and the upper bound solution of supporting force of deep tunnel was calculated under pore water pressure. The calculations were based on limit analysis method of upper bound theory, with the employment of non-associated Mohr-Coulomb flow rule. Nonlinear failure criterion was adopted. Optimized analysis was conducted for the effects of the tunnel depth, pore water pressure coefficient, the initial cohesive force and nonlinear coefficient on supporting force. The upper bound solutions are obtained by optimum method. Results are listed and compared with the previously published solutions for the verification of correctness and effectiveness. The failure shapes are presented, and results are discussed for different pore water pressure coefficients and nonlinear coefficients of tunnel face.展开更多
基金Project(2013CB036004)supported by National Basic Research Program of ChinaProjects(51178468+2 种基金51378510)supported by the National Natural Science Foundation of ChinaProject(2015zzts061)supported by the Fundamental Research Funds for the Central UniversitiesChina
文摘A joined failure mechanism of translation and rotation was proposed for the stability analysis of deep tunnel face, and the upper bound solution of supporting force of deep tunnel was calculated under pore water pressure. The calculations were based on limit analysis method of upper bound theory, with the employment of non-associated Mohr-Coulomb flow rule. Nonlinear failure criterion was adopted. Optimized analysis was conducted for the effects of the tunnel depth, pore water pressure coefficient, the initial cohesive force and nonlinear coefficient on supporting force. The upper bound solutions are obtained by optimum method. Results are listed and compared with the previously published solutions for the verification of correctness and effectiveness. The failure shapes are presented, and results are discussed for different pore water pressure coefficients and nonlinear coefficients of tunnel face.