期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于模态重构与多维评价的时间序列趋势提取 被引量:1
1
作者 杜加础 车文刚 程文辉 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2022年第5期902-913,共12页
为了准确提取时间序列的趋势特征,提出一种基于模态重构与多维评价的时间序列趋势提取算法。定义重要点作为时间序列分段点的候选集,运用自适应噪声的完备经验模态分解方法对时间序列进行分解和模态重构得到全局因子,使用全局因子度量... 为了准确提取时间序列的趋势特征,提出一种基于模态重构与多维评价的时间序列趋势提取算法。定义重要点作为时间序列分段点的候选集,运用自适应噪声的完备经验模态分解方法对时间序列进行分解和模态重构得到全局因子,使用全局因子度量重要点在整体维度上的重要程度,给出特征因子和边界因子的定义并分别用来度量重要点在单点维度和局部维度上的重要程度,根据3个评价因子综合评价重要点来选取分段点。仿真实验结果表明,该方法具有良好的去噪能力,在相同压缩率情况下的拟合精度比现有方法高,在对心电图趋势提取的实验中也验证了方法的有效性。 展开更多
关键词 时间序列 自适应噪声的完备经验模态分解 模态重构 分段线性表示
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部