波达方向估计(Direction Of Arrival,DOA)通过使用传感器阵列来识别声源方位,而传统的DOA估计方法忽略了声源在空间分布的稀疏性,目前的凸稀疏DOA估计方法和非凸稀疏DOA估计方法所使用的惩罚函数未考虑稀疏度量l0范数的重要特性——尺...波达方向估计(Direction Of Arrival,DOA)通过使用传感器阵列来识别声源方位,而传统的DOA估计方法忽略了声源在空间分布的稀疏性,目前的凸稀疏DOA估计方法和非凸稀疏DOA估计方法所使用的惩罚函数未考虑稀疏度量l0范数的重要特性——尺度不变性,因此无法精确描述声源的空域稀疏结构,难以获得较高的DOA估计精度.为此,本文首先使用具有尺度不变性的范数比函数来逼近l0范数,刻画声源空域稀疏结构;接着,针对范数比函数的非凸特性,采用光滑化的思想,构建了平滑的近似函数;然后,构建了基于光滑lp比lq范数的稀疏DOA估计模型,开发了基于光滑lp比lq范数的稀疏DOA估计算法(Smoothed lp-Over-lqregularized Sparse DOA Estimation algorithm,SPOQ-SDOA).大量仿真分析表明,与流行的多快拍DOA估计算法相比,本文提出的算法在不同信噪比和快拍数下有更高的DOA估计精度和更好的性能表现.SWell Ex-96海试实验中的S5事件分析结果验证了所提算法的有效性.展开更多
文摘波达方向估计(Direction Of Arrival,DOA)通过使用传感器阵列来识别声源方位,而传统的DOA估计方法忽略了声源在空间分布的稀疏性,目前的凸稀疏DOA估计方法和非凸稀疏DOA估计方法所使用的惩罚函数未考虑稀疏度量l0范数的重要特性——尺度不变性,因此无法精确描述声源的空域稀疏结构,难以获得较高的DOA估计精度.为此,本文首先使用具有尺度不变性的范数比函数来逼近l0范数,刻画声源空域稀疏结构;接着,针对范数比函数的非凸特性,采用光滑化的思想,构建了平滑的近似函数;然后,构建了基于光滑lp比lq范数的稀疏DOA估计模型,开发了基于光滑lp比lq范数的稀疏DOA估计算法(Smoothed lp-Over-lqregularized Sparse DOA Estimation algorithm,SPOQ-SDOA).大量仿真分析表明,与流行的多快拍DOA估计算法相比,本文提出的算法在不同信噪比和快拍数下有更高的DOA估计精度和更好的性能表现.SWell Ex-96海试实验中的S5事件分析结果验证了所提算法的有效性.