期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SAPSO-BP神经网络的井下自适应定位算法 被引量:9
1
作者 莫树培 唐琎 +1 位作者 杜永万 陈明 《工矿自动化》 北大核心 2019年第7期80-85,共6页
针对基于传统BP神经网络的井下定位算法存在收敛速度慢、易形成局部极值、在煤矿井下强时变性电磁环境中定位误差大等问题,提出了一种基于模拟退火思想的粒子群优化算法加BP神经网络(SAPSO-BP)的井下自适应定位算法。采用SAPSO算法优化B... 针对基于传统BP神经网络的井下定位算法存在收敛速度慢、易形成局部极值、在煤矿井下强时变性电磁环境中定位误差大等问题,提出了一种基于模拟退火思想的粒子群优化算法加BP神经网络(SAPSO-BP)的井下自适应定位算法。采用SAPSO算法优化BP神经网络的初始权值和阈值,以加快训练收敛速度,使之到达全局最优;通过安装在井下巷道中的无线校准器采集目标点接收信号强度指示(RSSI)值,采用自适应动态校准方法对RSSI值进行实时校准,以减小强时变性电磁环境对定位精度的影响;最后利用SAPSO-BP神经网络估算出目标点位置坐标。实验结果表明,该算法的定位误差在2m内的置信概率为77.54%,平均误差为1.53m,定位性能优于未校准SAPSO-BP神经网络算法、PSO-BP神经网络算法、BP神经网络算法。 展开更多
关键词 井下人员定位 自适应定位 模拟退火思想的粒子群优化算法 SAPSO-BP神经网络 自适应动态校准
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部