烧结过程的运行性能是生产效率和能源利用的综合表现.运行性能评价是保持烧结过程的运行性能处于最优等级的前提.考虑到时间序列数据的冗余,提出一种基于粒度聚类的铁矿石烧结过程运行性能评价方法.首先,利用单因素方差分析方法选取影...烧结过程的运行性能是生产效率和能源利用的综合表现.运行性能评价是保持烧结过程的运行性能处于最优等级的前提.考虑到时间序列数据的冗余,提出一种基于粒度聚类的铁矿石烧结过程运行性能评价方法.首先,利用单因素方差分析方法选取影响运行性能等级的检测参数;然后,采用多粒度区间信息粒化实现检测参数时间序列数据的降维,并进行粒度聚类,得到聚类标签;最后,以聚类得到的聚类标签为输入,利用随机森林算法进行运行性能等级评价.利用实际钢铁企业的运行数据进行实验,构建两个对比实验,分别采用基于时间序列数据聚类(Time series data clustering,TSDC)方法和基于时间序列特征聚类(Time series feature clustering,TSFC)方法.实验结果表明,该方法为有效评价烧结过程的运行性能提供了一套可行方案,为操作人员提升烧结过程运行性能提供了有力的指导.展开更多
文摘烧结过程的运行性能是生产效率和能源利用的综合表现.运行性能评价是保持烧结过程的运行性能处于最优等级的前提.考虑到时间序列数据的冗余,提出一种基于粒度聚类的铁矿石烧结过程运行性能评价方法.首先,利用单因素方差分析方法选取影响运行性能等级的检测参数;然后,采用多粒度区间信息粒化实现检测参数时间序列数据的降维,并进行粒度聚类,得到聚类标签;最后,以聚类得到的聚类标签为输入,利用随机森林算法进行运行性能等级评价.利用实际钢铁企业的运行数据进行实验,构建两个对比实验,分别采用基于时间序列数据聚类(Time series data clustering,TSDC)方法和基于时间序列特征聚类(Time series feature clustering,TSFC)方法.实验结果表明,该方法为有效评价烧结过程的运行性能提供了一套可行方案,为操作人员提升烧结过程运行性能提供了有力的指导.