A novel circuit is presented in order to enhance the slew rate of two-stage operational amplifiers. The enhancer utilizes the class-AB input stage to improve current efficiency, while it works on an open loop with reg...A novel circuit is presented in order to enhance the slew rate of two-stage operational amplifiers. The enhancer utilizes the class-AB input stage to improve current efficiency, while it works on an open loop with regard to the enhanced amplifier so that it has no effect on the stability of the amplifier. During the slewing period, the enhancer detects input differential voltage of the amplifier, and produces external enhancement currents for the amplifier, driving load capacitors to charge/discharge faster. Simulation results show that, fora large input step, the enhancerreduces settling time by nearly 50%. When the circuit is employed in a sample-and-hold circuit, it greatly improves the spur-free dynamic range by 44.6 dB and the total harmonic distortion by 43.9 dB. The proposed circuit is very suitable to operate under a low voltage (1.2 V or below) with a standby current of 200 μA.展开更多
基金supported by the National Science&Technology Major Project(No.2009ZX03007-002-02)the Program of Shanghai Subject Chief Scientist(No.08XD14007)+1 种基金the Shanghai Municipal IC Design Special Program(No.097062)the Special Research Projects for PhD Education(No.20100071110026)
文摘A novel circuit is presented in order to enhance the slew rate of two-stage operational amplifiers. The enhancer utilizes the class-AB input stage to improve current efficiency, while it works on an open loop with regard to the enhanced amplifier so that it has no effect on the stability of the amplifier. During the slewing period, the enhancer detects input differential voltage of the amplifier, and produces external enhancement currents for the amplifier, driving load capacitors to charge/discharge faster. Simulation results show that, fora large input step, the enhancerreduces settling time by nearly 50%. When the circuit is employed in a sample-and-hold circuit, it greatly improves the spur-free dynamic range by 44.6 dB and the total harmonic distortion by 43.9 dB. The proposed circuit is very suitable to operate under a low voltage (1.2 V or below) with a standby current of 200 μA.